Abstract The ocean is one of the most important sinks for anthropogenic CO2emissions. Here, I use an ocean circulation inverse model (OCIM), ocean biogeochemical models, and pCO2interpolation products to examine trends and variability in the oceanic CO2sink. The OCIM quantifies the impacts of rising atmospheric CO2, changing sea surface temperatures, and gas transfer velocities on the oceanic CO2sink. Together, these effects account for an oceanic CO2uptake of 2.2 ± 0.1 PgC yr−1from 1994 to 2007, and a net increase in the oceanic carbon inventory of 185 PgC from 1780 to 2020. However, these effects cannot account for the majority of the decadal variability shown in data‐based reconstructions of the ocean CO2sink over the past 30 years. This implies that decadal variability of the ocean CO2sink is predominantly driven by changes in ocean circulation or biology that act to redistribute both natural and anthropogenic carbon in the ocean.
more »
« less
Magnitude, Trends, and Variability of the Global Ocean Carbon Sink From 1985 to 2018
Abstract This contribution to the RECCAP2 (REgional Carbon Cycle Assessment and Processes) assessment analyzes the processes that determine the global ocean carbon sink, and its trends and variability over the period 1985–2018, using a combination of models and observation‐based products. The mean sea‐air CO2flux from 1985 to 2018 is −1.6 ± 0.2 PgC yr−1based on an ensemble of reconstructions of the history of sea surface pCO2(pCO2products). Models indicate that the dominant component of this flux is the net oceanic uptake of anthropogenic CO2, which is estimated at −2.1 ± 0.3 PgC yr−1by an ensemble of ocean biogeochemical models, and −2.4 ± 0.1 PgC yr−1by two ocean circulation inverse models. The ocean also degasses about 0.65 ± 0.3 PgC yr−1of terrestrially derived CO2, but this process is not fully resolved by any of the models used here. From 2001 to 2018, the pCO2products reconstruct a trend in the ocean carbon sink of −0.61 ± 0.12 PgC yr−1 decade−1, while biogeochemical models and inverse models diagnose an anthropogenic CO2‐driven trend of −0.34 ± 0.06 and −0.41 ± 0.03 PgC yr−1 decade−1, respectively. This implies a climate‐forced acceleration of the ocean carbon sink in recent decades, but there are still large uncertainties on the magnitude and cause of this trend. The interannual to decadal variability of the global carbon sink is mainly driven by climate variability, with the climate‐driven variability exceeding the CO2‐forced variability by 2–3 times. These results suggest that anthropogenic CO2dominates the ocean CO2sink, while climate‐driven variability is potentially large but highly uncertain and not consistently captured across different methods.
more »
« less
- PAR ID:
- 10469583
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Global Biogeochemical Cycles
- Volume:
- 37
- Issue:
- 10
- ISSN:
- 0886-6236
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We assess the Southern Ocean CO2uptake (1985–2018) using data sets gathered in the REgional Carbon Cycle Assessment and Processes Project Phase 2. The Southern Ocean acted as a sink for CO2with close agreement between simulation results from global ocean biogeochemistry models (GOBMs, 0.75 ± 0.28 PgC yr−1) andpCO2‐observation‐based products (0.73 ± 0.07 PgC yr−1). This sink is only half that reported by RECCAP1 for the same region and timeframe. The present‐day net uptake is to first order a response to rising atmospheric CO2, driving large amounts of anthropogenic CO2(Cant) into the ocean, thereby overcompensating the loss of natural CO2to the atmosphere. An apparent knowledge gap is the increase of the sink since 2000, withpCO2‐products suggesting a growth that is more than twice as strong and uncertain as that of GOBMs (0.26 ± 0.06 and 0.11 ± 0.03 Pg C yr−1 decade−1, respectively). This is despite nearly identicalpCO2trends in GOBMs andpCO2‐products when both products are compared only at the locations wherepCO2was measured. Seasonal analyses revealed agreement in driving processes in winter with uncertainty in the magnitude of outgassing, whereas discrepancies are more fundamental in summer, when GOBMs exhibit difficulties in simulating the effects of the non‐thermal processes of biology and mixing/circulation. Ocean interior accumulation of Cantpoints to an underestimate of Cantuptake and storage in GOBMs. Future work needs to link surface fluxes and interior ocean transport, build long overdue systematic observation networks and push toward better process understanding of drivers of the carbon cycle.more » « less
-
Abstract The coastal ocean contributes to regulating atmospheric greenhouse gas concentrations by taking up carbon dioxide (CO2) and releasing nitrous oxide (N2O) and methane (CH4). In this second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP2), we quantify global coastal ocean fluxes of CO2, N2O and CH4using an ensemble of global gap‐filled observation‐based products and ocean biogeochemical models. The global coastal ocean is a net sink of CO2in both observational products and models, but the magnitude of the median net global coastal uptake is ∼60% larger in models (−0.72 vs. −0.44 PgC year−1, 1998–2018, coastal ocean extending to 300 km offshore or 1,000 m isobath with area of 77 million km2). We attribute most of this model‐product difference to the seasonality in sea surface CO2partial pressure at mid‐ and high‐latitudes, where models simulate stronger winter CO2uptake. The coastal ocean CO2sink has increased in the past decades but the available time‐resolving observation‐based products and models show large discrepancies in the magnitude of this increase. The global coastal ocean is a major source of N2O (+0.70 PgCO2‐e year−1in observational product and +0.54 PgCO2‐e year−1in model median) and CH4(+0.21 PgCO2‐e year−1in observational product), which offsets a substantial proportion of the coastal CO2uptake in the net radiative balance (30%–60% in CO2‐equivalents), highlighting the importance of considering the three greenhouse gases when examining the influence of the coastal ocean on climate.more » « less
-
Abstract The terrestrial carbon sink provides a critical negative feedback to climate warming, yet large uncertainty exists on its long‐term dynamics. Here we combined terrestrial biosphere models (TBMs) and climate projections, together with climate‐specific land use change, to investigate both the trend and interannual variability (IAV) of the terrestrial carbon sink from 1986 to 2099 under two representative concentration pathways RCP2.6 and RCP6.0. The results reveal a saturation of the terrestrial carbon sink by the end of this century under RCP6.0 due to warming and declined CO2effects. Compared to 1986–2005 (0.96 ± 0.44 Pg C yr−1), during 2080–2099 the terrestrial carbon sink would decrease to 0.60 ± 0.71 Pg C yr−1but increase to 3.36 ± 0.77 Pg C yr−1, respectively, under RCP2.6 and RCP6.0. The carbon sink caused by CO2, land use change and climate change during 2080–2099 is −0.08 ± 0.11 Pg C yr−1, 0.44 ± 0.05 Pg C yr−1, and 0.24 ± 0.70 Pg C yr−1under RCP2.6, and 4.61 ± 0.17 Pg C yr−1, 0.22 ± 0.07 Pg C yr−1, and ‐1.47 ± 0.72 Pg C yr−1under RCP6.0. In addition, the carbon sink IAV shows stronger variance under RCP6.0 than RCP2.6. Under RCP2.6, temperature shows higher correlation with the carbon sink IAV than precipitation in most time, which however is the opposite under RCP6.0. These results suggest that the role of terrestrial carbon sink in curbing climate warming would be weakened in a no‐mitigation world in future, and active mitigation efforts are required as assumed under RCP2.6.more » « less
-
Abstract The ocean has absorbed about 25% of the carbon emitted by humans to date. To better predict how much climate will change, it is critical to understand how this ocean carbon sink will respond to future emissions. Here, we examine the ocean carbon sink response to low emission (SSP1-1.9, SSP1-2.6), intermediate emission (SSP2-4.5, SSP5-3.4-OS), and high emission (SSP5-8.5) scenarios in CMIP6 Earth System Models and in MAGICC7, a reduced-complexity climate carbon system model. From 2020–2100, the trajectory of the global-mean sink approximately parallels the trajectory of anthropogenic emissions. With increasing cumulative emissions during this century (SSP5-8.5 and SSP2-4.5), the cumulative ocean carbon sink absorbs 20%–30% of cumulative emissions since 2015. In scenarios where emissions decline, the ocean absorbs an increasingly large proportion of emissions (up to 120% of cumulative emissions since 2015). Despite similar responses in all models, there remains substantial quantitative spread in estimates of the cumulative sink through 2100 within each scenario, up to 50 PgC in CMIP6 and 120 PgC in the MAGICC7 ensemble. We demonstrate that for all but SSP1-2.6, approximately half of this future spread can be eliminated if model results are adjusted to agree with modern observation-based estimates. Considering the spatial distribution of air-sea CO2fluxes in CMIP6, we find significant zonal-mean divergence from the suite of newly-available observation-based constraints. We conclude that a significant portion of future ocean carbon sink uncertainty is attributable to modern-day errors in the mean state of air-sea CO2fluxes, which in turn are associated with model representations of ocean physics and biogeochemistry. Bringing models into agreement with modern observation-based estimates at regional to global scales can substantially reduce uncertainty in future role of the ocean in absorbing anthropogenic CO2from the atmosphere and mitigating climate change.more » « less
An official website of the United States government
