skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparison of bacterial carbon production estimates from dilution and 3H ‐leucine methods across a strong gradient in ocean productivity
Abstract The uptake of3H‐labeled leucine into proteins, a widely used method for estimating bacterial carbon production (BCP), is suggested to underestimate or overestimate bacterial growth in the open ocean by a factor of 40 uncertainty. Meanwhile, an alternative BCP approach, by the dilution method, has untested concerns about potential overestimation of bacterial growth from dissolved substrates released by filtration. We compared BCPDiland BCPLeuestimates from three cruises across a broad trophic gradient, from offshore oligotrophy to coastal upwelling, in the California Current Ecosystem. Our initial analyses based on midday microscopical estimates of bacterial size and a priori assumptions of conversions relationships revealed a mean two‐fold difference in BCP estimates (BCPDilhigher), but no systematic bias between low and high productivity stations. BCPDiland BCPLeuboth demonstrated strong relationships with bacteria cell abundance. Reanalysis of results, involving a different cell carbon‐biovolume relationship and informed by forward angle light scatter from flow cytometry as a relative cell size index, demonstrated that BCPDiland BCPLeuare fully compatible, with a 1 : 1 fit for bacteria of 5 fg C cell−1. Based on these results and considering different strengths of the methods, the combined use of3H‐labeled leucine and dilution techniques provide strong mutually supportive constraints on bacterial biomass and production.  more » « less
Award ID(s):
2224726 1637632
PAR ID:
10406658
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography: Methods
Volume:
21
Issue:
6
ISSN:
1541-5856
Page Range / eLocation ID:
p. 295-306
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Heterotrophic prokaryotic production (BP) was studied in the western tropical South Pacific (WTSP) using the leucine technique, revealing spatial and temporal variability within the region. Integrated over the euphotic zone, BP ranged from 58 to 120mg Cm−2d−1 within the Melanesian Archipelago, and from 31 to 50mg Cm−2d−1 within the western subtropical gyre. The collapse of a bloom was followed during 6 days in the south of Vanuatu using a Lagrangian sampling strategy. During this period, rapid evolution was observed in the three main parameters influencing the metabolic state: BP, primary production (PP) and bacterial growth efficiency. With N2 fixation being one of the most important fluxes fueling new production, we explored relationships between BP, PP and N2 fixation rates over the WTSP. The contribution of N2 fixation rates to bacterial nitrogen demand ranged from 3 to 81%. BP variability was better explained by the variability of N2 fixation rates than by that of PP in surface waters of the Melanesian Archipelago, which were characterized by N-depleted layers and low DIP turnover times (TDIP<100h). This is consistent with the fact that nitrogen was often one of the main factors controlling BP on short timescales, as shown using enrichment experiments, followed by dissolved inorganic phosphate (DIP) near the surface and labile organic carbon deeper in the euphotic zone. However, BP was more significantly correlated with PP, but not with N2 fixation rates where DIP was more available (TDIP>100h), deeper in the Melanesian Archipelago, or within the entire euphotic zone in the subtropical gyre. The bacterial carbon demand to gross primary production ratio ranged from 0.75 to 3.1. These values are discussed in the framework of various assumptions and conversion factors used to estimate this ratio, including the methodological errors, the daily variability of BP, the bacterial growth efficiency and one bias so far not considered: the ability for Prochlorococcus to assimilate leucine in the dark. 
    more » « less
  2. Abstract The heterotrophic marine bacterium,Ruegeria pomeroyi, was experimentally cultured under environmentally realistic carbon conditions and with a tracer-level addition of13C-labeled leucine to track bacterial protein biosynthesis through growth phases. A combination of methods allowed observation of real-time bacterial protein production to understand metabolic priorities through the different growth phases. Over 2000 proteins were identified in each experimental culture from exponential and stationary growth phases. Within two hours of the13C-labeled leucine addition,R.pomeroyisignificantly assimilated the newly encountered substrate into new proteins. This dataset provides a fundamental baseline for understanding growth phase differences in molecular physiology of a cosmopolitan marine bacterium. 
    more » « less
  3. Abstract Heterotrophic bacteria in the surface ocean play a critical role in the global carbon cycle and the magnitude of this role depends on their growth rates. Although methods for determining bacterial community growth rates based on incorporation of radiolabeled thymidine and leucine are widely accepted, they are based on a number of assumptions and simplifications. We sought to independently assess these methods by comparing bacterial growth rates to turnover rates of bacterial membranes using previously published methods in a range of open‐ocean settings. We found that turnover rates for heterotrophic bacterial phospholipids averaged 0.80 ± 0.35 d−1. This was supported by independent measurements of turnover rates of a membrane‐bound pigment in photoheterotrophic bacteria, bacteriochlorophyll a(0.85 ± 0.09 d−1). By contrast, bacterial growth rates measured by uptake of radiolabeled thymidine and leucine were 0.12 ± 0.08 d−1, well within the range expected from the literature. We explored whether the discrepancies between phospholipid turnover rates and bacterial growth rate could be explained by membrane recycling/remodeling and other factors, but were left to conclude that the radiolabeled thymidine and leucine incorporation methods substantially underestimated actual bacterial growth rates. We use a simple model to show that the faster bacterial growth rates we observed can be accommodated within the constraints of the microbial carbon budget if bacteria are smaller than currently thought, grow with greater efficiency, or some combination of these two factors. 
    more » « less
  4. Vital rates, including growth responses to environmental variability, are poorly characterized for the diverse taxa of heterotrophic bacteria (HBact) in marine ecosystems. Here, we evaluated the potential for combining molecular analyses with dilution experiments to assess taxon-specific growth (cell division) and net growth rates of HBact in natural waters. Two-treatment dilution experiments were conducted within situincubations under 3 environmental conditions in the California Current Ecosystem, at offshore and inshore sites during a warm upwelling-suppressed year (2014) and for normal inshore upwelling, representing a 33-fold primary production range. Relative sequence reads from 16S rRNA metabarcoding were normalized to total HBact counts from flow cytometry for community abundance and rate calculations. Composition varied from dominance of Alphaproteobacteria (56%) in oligotrophic offshore (SAR11) and mesotrophic inshore waters (SAR11 and Rhodobacteria) to Bacteriodes/Flavobacteria dominance (64%) and mixed sub-taxon importance (Polaribacter, Rhodobacteria,Formosa) during upwelling. Net growth rates in bottles, validated by comparison to ambient community net growth following a satellite-tracked drifter, varied from near steady state for offshore and inshore conditions to dynamic community changes during upwelling. Mean growth rates doubled (0.33 to 0.62 d-1) over the productivity range, and taxon estimates varied from -0.17 d-1(Formosa, offshore) to 1.53 d-1(SAR11, upwelling). Increasing growth of Flavobacteria and Rhodobacteria paralleled their abundance and dominance increases with productivity. SAR11 growth remained higher than average with increasing production, despite declining abundances. We highlight possible PCR or 16S rRNA gene copy biases of growth rate estimates as research needs for further applications of this approach. 
    more » « less
  5. A highly air- and water-stable Fe(ii) complex with a fluorinated ligand has a strong19F MRI signal but is a poorT1-weighted1H MRI contrast agent. Upon oxidation by H2O2, the19F MRI signal decays as the relaxivity for1H MRI markedly improves. 
    more » « less