skip to main content


Title: Growth phase proteomics of the heterotrophic marine bacterium Ruegeria pomeroyi
Abstract

The heterotrophic marine bacterium,Ruegeria pomeroyi, was experimentally cultured under environmentally realistic carbon conditions and with a tracer-level addition of13C-labeled leucine to track bacterial protein biosynthesis through growth phases. A combination of methods allowed observation of real-time bacterial protein production to understand metabolic priorities through the different growth phases. Over 2000 proteins were identified in each experimental culture from exponential and stationary growth phases. Within two hours of the13C-labeled leucine addition,R.pomeroyisignificantly assimilated the newly encountered substrate into new proteins. This dataset provides a fundamental baseline for understanding growth phase differences in molecular physiology of a cosmopolitan marine bacterium.

 
more » « less
Award ID(s):
1636045 1633939
NSF-PAR ID:
10153871
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Data
Volume:
6
Issue:
1
ISSN:
2052-4463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The uptake of3H‐labeled leucine into proteins, a widely used method for estimating bacterial carbon production (BCP), is suggested to underestimate or overestimate bacterial growth in the open ocean by a factor of 40 uncertainty. Meanwhile, an alternative BCP approach, by the dilution method, has untested concerns about potential overestimation of bacterial growth from dissolved substrates released by filtration. We compared BCPDiland BCPLeuestimates from three cruises across a broad trophic gradient, from offshore oligotrophy to coastal upwelling, in the California Current Ecosystem. Our initial analyses based on midday microscopical estimates of bacterial size and a priori assumptions of conversions relationships revealed a mean two‐fold difference in BCP estimates (BCPDilhigher), but no systematic bias between low and high productivity stations. BCPDiland BCPLeuboth demonstrated strong relationships with bacteria cell abundance. Reanalysis of results, involving a different cell carbon‐biovolume relationship and informed by forward angle light scatter from flow cytometry as a relative cell size index, demonstrated that BCPDiland BCPLeuare fully compatible, with a 1 : 1 fit for bacteria of 5 fg C cell−1. Based on these results and considering different strengths of the methods, the combined use of3H‐labeled leucine and dilution techniques provide strong mutually supportive constraints on bacterial biomass and production.

     
    more » « less
  2. Abstract

    Metabolite exchange within marine microbial communities transfers carbon and other major elements through global cycles and forms the basis of microbial interactions. Yet lack of gene annotations and concern about the quality of existing ones remain major impediments to revealing currencies of carbon flux. We employed an arrayed mutant library of the marine bacterium Ruegeria pomeroyi DSS-3 to experimentally annotate substrates of organic compound transporter systems, using mutant growth and compound drawdown analyses to link transporters to their cognate substrates. Mutant experiments verified substrates for thirteen R. pomeroyi transporters. Four were previously hypothesized based on gene expression data (taurine, glucose/xylose, isethionate, and cadaverine/putrescine/spermidine); five were previously hypothesized based on homology to experimentally annotated transporters in other bacteria (citrate, glycerol, N-acetylglucosamine, fumarate/malate/succinate, and dimethylsulfoniopropionate); and four had no previous annotations (thymidine, carnitine, cysteate, and 3-hydroxybutyrate). These bring the total number of experimentally-verified organic carbon influx transporters to 18 of 126 in the R. pomeroyi genome. In a longitudinal study of a coastal phytoplankton bloom, expression patterns of the experimentally annotated transporters linked them to different stages of the bloom, and also led to the hypothesis that citrate and 3-hydroxybutyrate were among the most highly available bacterial substrates. Improved functional annotation of the gatekeepers of organic carbon uptake is critical for deciphering carbon flux and fate in microbial ecosystems.

     
    more » « less
  3. Abstract

    Trade‐offs among the key life‐history traits of reproduction and immunity have been widely documented. However, the currency in use is not well‐understood. We investigated how reproducing female side‐blotched lizards,Uta stansburiana, allocate lipids versus proteins when given an immune challenge. We tested whether lizards would invest more in reproduction or immunity depending on reproductive stage. Females were given stable isotopes (15N‐leucine and13C‐1‐palmitic acid), maintained on a regular diet and given either a cutaneous biopsy or a sham biopsy (control). Stable isotopes were monitored and analyzed in feces and uric acid, skin biopsies, eggs, and toe clips. We found that lizards deposited both proteins and lipids into their healing wounds (immune‐challenged), skin (control), and eggs (all) and that catabolism of proteins exceeded incorporation into tissue during wound‐healing. Specifically, we found that healed biopsies of wounded animals had more leucine and palmitic acid than the nonregrown skin biopsies taken from unwounded control animals. Earlier in reproduction, lizards invested relatively more labeled proteins into healing their wound tissue, but not into unwounded skin of control animals. Thus, reproduction is sometimes favored over self‐maintenance, but only in later reproductive stages. Finally, we documented positive relationships among the amount of palmitic acid deposited in the eggs, the amount of food eaten, and the amount of palmitic acid excreted, suggesting higher turnover rates of lipids in lizards investing highly in their eggs.

     
    more » « less
  4. Abstract

    Animals often consume resources from multiple energy channels, thereby connecting food webs and driving trophic structure. Such ‘multichannel feeding’ can dictate ecosystem function and stability, but tools to quantify this process are lacking. Stable isotope ‘fingerprints’ are unique patterns in essential amino acid (EAA) δ13C values that vary consistently between energy channels like primary production and detritus, and they have emerged as a tool to trace energy flow in wild systems. Because animals cannot synthesize EAAs de novo and must acquire them from dietary proteins, ecologists often assume δ13C fingerprints travel through food webs unaltered. Numerous studies have used this approach to quantify energy flow and multichannel feeding in animals, but δ13C fingerprinting has never been experimentally tested in a vertebrate consumer.

    We tested the efficacy of δ13C fingerprinting using captive deer micePeromyscus maniculatusraised on diets containing bacterial, fungal and plant protein, as well as a combination of all three sources. We measured the transfer of δ13C fingerprints from diet to consumer liver, muscle and bone collagen, and we used linear discriminant analysis (LDA) and isotopic mixing models to estimate dietary proportions compared to known contributions. Lastly, we tested the use of published δ13C source fingerprints previously used to estimate energy flow and multichannel feeding by consumers.

    We found that EAA δ13C values exhibit significant isotopic (i.e. trophic) fractionation between consumer tissues and diets. Nevertheless, LDA revealed that δ13C fingerprints are consistently routed and assimilated into consumer tissues, regardless of isotopic incorporation rate. Isotopic mixing models accurately estimated the proportional diets of consumers, but all models overestimated plant‐based protein contributions, likely due to the digestive efficiencies of protein sources. Lastly, we found that δ13C source fingerprints from published literature can lead to erroneous diet reconstruction.

    We show that δ13C fingerprints accurately measure energy flow to vertebrate consumers across tissues with different isotopic incorporation rates, thereby enabling the estimation of multichannel feeding at various temporal scales. Our findings illustrate the power of δ13C fingerprinting for quantifying food web dynamics, but also reveal that careful selection of dietary source data is critical to the accuracy of this emerging technique.

     
    more » « less
  5. Stock, Ann M. (Ed.)
    ABSTRACT Chemotaxis and motility are important traits that support bacterial survival in various ecological niches and in pathogenic and symbiotic host interaction. Chemotactic stimuli are sensed by chemoreceptors or m ethyl-accepting c hemotaxis p roteins (MCPs), which direct the swimming behavior of the bacterial cell. In this study, we present evidence that the cellular abundance of chemoreceptors in the plant symbiont Sinorhizobium meliloti can be altered by the addition of several to as few as one amino acid residues and by including common epitope tags such as 3×FLAG and 6×His at their C termini. To further dissect this phenomenon and its underlying molecular mechanism, we focused on a detailed analysis of the amino acid sensor McpU. Controlled proteolysis is important for the maintenance of an appropriate stoichiometry of chemoreceptors and between chemoreceptors and chemotactic signaling proteins, which is essential for an optimal chemotactic response. We hypothesized that enhanced stability is due to interference with protease binding, thus affecting proteolytic efficacy. Location of the protease recognition site was defined through McpU stability measurements in a series of deletion and amino acid substitution mutants. Deletions in the putative protease recognition site had similar effects on McpU abundance, as did extensions at the C terminus. Our results provide evidence that the programmed proteolysis of chemotaxis proteins in S. meliloti is cell cycle regulated. This posttranslational control, together with regulatory pathways on the transcriptional level, limits the chemotaxis machinery to the early exponential growth phase. Our study identified parallels to cell cycle-dependent processes during asymmetric cell division in Caulobacter crescentus . IMPORTANCE The symbiotic bacterium Sinorhizobium meliloti contributes greatly to growth of the agriculturally valuable host plant alfalfa by fixing atmospheric nitrogen. Chemotaxis of S. meliloti cells toward alfalfa roots mediates this symbiosis. The present study establishes programmed proteolysis as a factor in the maintenance of the S. meliloti chemotaxis system. Knowledge about cell cycle-dependent, targeted, and selective proteolysis in S. meliloti is important to understand the molecular mechanisms of maintaining a suitable chemotaxis response. While the role of regulated protein turnover in the cell cycle progression of Caulobacter crescentus is well understood, these pathways are just beginning to be characterized in S. meliloti . In addition, our study should alert about the cautionary use of epitope tags for protein quantification. 
    more » « less