skip to main content


Title: Intrinsic alignment as an RSD contaminant in the DESI survey
ABSTRACT

We measure the tidal alignment of the major axes of luminous red galaxies (LRGs) from the Legacy Imaging Survey and use it to infer the artificial redshift-space distortion signature that will arise from an orientation-dependent, surface-brightness selection in the Dark Energy Spectroscopic Instrument (DESI) survey. Using photometric redshifts to downweight the shape–density correlations due to weak lensing, we measure the intrinsic tidal alignment of LRGs. Separately, we estimate the net polarization of LRG orientations from DESI’s fibre-magnitude target selection to be of order 10−2 along the line of sight. Using these measurements and a linear tidal model, we forecast a 0.5 per cent fractional decrease on the quadrupole of the two-point correlation function for projected separations of 40–80 h−1 Mpc. We also use a halo catalogue from the Abacussummit cosmological simulation suite to reproduce this false quadrupole.

 
more » « less
PAR ID:
10406694
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
522
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 117-129
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We estimate the redshift-dependent, anisotropic clustering signal in the Dark Energy Spectroscopic Instrument (DESI) Year 1 Survey created by tidal alignments of Luminous Red Galaxies (LRGs) and a selection-induced galaxy orientation bias. To this end, we measured the correlation between LRG shapes and the tidal field with DESI’s Year 1 redshifts, as traced by LRGs and Emission-Line Galaxies. We also estimate the galaxy orientation bias of LRGs caused by DESI’s aperture-based selection, and find it to increase by a factor of seven between redshifts 0.4−1.1 due to redder, fainter galaxies falling closer to DESI’s imaging selection cuts. These effects combine to dampen measurements of the quadrupole of the correlation function (ξ2) caused by structure growth on scales of 10–80 h−1 Mpc by about 0.15 per cent for low redshifts (0.4 < z < 0.6) and 0.8 per cent for high (0.8 < z < 1.1), a significant fraction of DESI’s error budget. We provide estimates of the ξ2 signal created by intrinsic alignments that can be used to correct this effect, which is necessary to meet DESI’s forecasted precision on measuring the growth rate of structure. While imaging quality varies across DESI’s footprint, we find no significant difference in this effect between imaging regions in the Legacy Imaging Survey.

     
    more » « less
  2. Abstract

    We use subhalo abundance and age distribution matching to create magnitude-limited mock galaxy catalogs atz∼ 0.43, 0.52, and 0.63 withz-band and 3.4μmW1-band absolute magnitudes andrzandrW1 colors. From these magnitude-limited mocks, we select mock luminous red galaxy (LRG) samples according to the (rz)-based (optical) and (rW1)-based (infrared) selection criteria for the LRG sample of the Dark Energy Spectroscopic Instrument (DESI) survey. Our models reproduce the number densities, luminosity functions, color distributions, and projected clustering of the DESI Legacy Surveys that are the basis for DESI LRG target selection. We predict the halo occupation statistics of both optical and IR DESI LRGs at fixed cosmology and assess the differences between the two LRG samples. We find that IR-based SHAM modeling represents the differences between the optical and IR LRG populations better than using thezband and that age distribution matching overpredicts the clustering of LRGs, implying that galaxy color is uncorrelated with halo age in the LRG regime. Both the optical and IR DESI LRG target selections exclude some of the most luminous galaxies that would appear to be LRGs based on their position on the red sequence in optical color–magnitude space. Both selections also yield populations with a nontrivial LRG–halo connection that does not reach unity for the most massive halos. We find that the IR selection achieves greater completeness (≳90%) than the optical selection across all redshift bins studied.

     
    more » « less
  3. ABSTRACT

    Luminous red galaxies, or LRGs, are representative of the most massive galaxies and were originally selected in the Sloan Digital Sky Survey as good tracers of large-scale structure. They are dominated by by uniformly old stellar populations, have low star formation rates, early type morphologies, and little cold gas. Despite having old stellar populations and little in situ star formation, studies have shown that they have grown their stellar mass since z = 1, implying that they grow predominantly via the accretion of satellites. Tests of this picture have been limited because of the lack of deep imaging data sets that both covers a large enough area of the sky to contain substantial numbers of LRGs and that also is deep enough to detect faint satellites. We use the 25 deg2 Early Data Release (EDR) of the DESI Legacy Imaging Surveys to characterize the satellite galaxy population of LRGs out to z = 0.65. The DESI Legacy Imaging Surveys are comprised of grz imaging to 2–2.5 mag deeper than SDSS and with better image quality. We use a new statistical background technique to identify excess populations of putative satellite galaxies around 1823 LRGs at 0.2 < z < 0.65. In three redshift and luminosity bins we measure the numbers of satellite galaxies and their r−z colour distribution down to rest-frame g-band luminosity limits at least 3.6 times fainter than L*. In addition, we develop a forward modeling technique and apply it to constrain the mean number of satellites in each of our redshift and luminosity bins. Finally, we use these estimates to determine the amount of stellar mass growth in LRGs down to the local Universe.

     
    more » « less
  4. null (Ed.)
    ABSTRACT We evaluate the impact of imaging systematics on the clustering of luminous red galaxies (LRG), emission-line galaxies (ELG), and quasars (QSO) targeted for the upcoming Dark Energy Spectroscopic Instrument (DESI) survey. Using Data Release 7 of the DECam Legacy Survey, we study the effects of astrophysical foregrounds, stellar contamination, differences between north galactic cap and south galactic cap measurements, and variations in imaging depth, stellar density, galactic extinction, seeing, airmass, sky brightness, and exposure time before presenting survey masks and weights to mitigate these effects. With our sanitized samples in hand, we conduct a preliminary analysis of the clustering amplitude and evolution of the DESI main targets. From measurements of the angular correlation functions, we determine power law fits $r_0 = 7.78 \pm 0.26\, h^{-1}$Mpc, γ = 1.98 ± 0.02 for LRGs and $r_0 = 5.45 \pm 0.1\, h^{-1}$Mpc, γ = 1.54 ± 0.01 for ELGs. Additionally, from the angular power spectra, we measure the linear biases and model the scale-dependent biases in the weakly non-linear regime. Both sets of clustering measurements show good agreement with survey requirements for LRGs and ELGs, attesting that these samples will enable DESI to achieve precise cosmological constraints. We also present clustering as a function of magnitude, use cross-correlations with external spectroscopy to infer dN/dz and measure clustering as a function of luminosity, and probe higher order clustering statistics through counts-in-cells moments. 
    more » « less
  5. ABSTRACT

    We explore correlations between the orientations of small galaxy groups, or ‘multiplets’, and the large-scale gravitational tidal field. Using data from the Dark Energy Spectroscopic Instrument (DESI) Y1 survey, we detect the intrinsic alignment (IA) of multiplets to the galaxy-traced matter field out to separations of $100\,h^{-1}$ Mpc. Unlike traditional IA measurements of individual galaxies, this estimator is not limited by imaging of galaxy shapes and allows for direct IA detection beyond redshift $z=1$. Multiplet alignment is a form of higher order clustering, for which the scale-dependence traces the underlying tidal field and amplitude is a result of small-scale ($\lt 1h^{-1}$ Mpc) dynamics. Within samples of bright galaxies, luminous red galaxies (LRG) and emission-line galaxies, we find similar scale-dependence regardless of intrinsic luminosity or colour. This is promising for measuring tidal alignment in galaxy samples that typically display no IA. DESI’s LRG mock galaxy catalogues created from the A bacusS ummitN-body simulations produce a similar alignment signal, though with a 33 per cent lower amplitude at all scales. An analytic model using a non-linear power spectrum (NLA) only matches the signal down to 20 $h^{-1}$ Mpc. Our detection demonstrates that galaxy clustering in the non-linear regime of structure formation preserves an interpretable memory of the large-scale tidal field. Multiplet alignment complements traditional two-point measurements by retaining directional information imprinted by tidal forces, and contains additional line-of-sight information compared to weak lensing. This is a more effective estimator than the alignment of individual galaxies in dense, blue, or faint galaxy samples.

     
    more » « less