skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A General Framework for Inferring Bayesian Ideal Observer Models from Psychophysical Data
Abstract A central question in neuroscience is how sensory inputs are transformed into percepts. At this point, it is clear that this process is strongly influenced by prior knowledge of the sensory environment. Bayesian ideal observer models provide a useful link between data and theory that can help researchers evaluate how prior knowledge is represented and integrated with incoming sensory information. However, the statistical prior employed by a Bayesian observer cannot be measured directly, and must instead be inferred from behavioral measurements. Here, we review the general problem of inferring priors from psychophysical data, and the simple solution that follows from assuming a prior that is a Gaussian probability distribution. As our understanding of sensory processing advances, however, there is an increasing need for methods to flexibly recover the shape of Bayesian priors that are not well approximated by elementary functions. To address this issue, we describe a novel approach that applies to arbitrary prior shapes, which we parameterize using mixtures of Gaussian distributions. After incorporating a simple approximation, this method produces an analytical solution for psychophysical quantities that can be numerically optimized to recover the shapes of Bayesian priors. This approach offers advantages in flexibility, while still providing an analytical framework for many scenarios. We provide a MATLAB toolbox implementing key computations described herein.  more » « less
Award ID(s):
2041726
PAR ID:
10406717
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.1523
Date Published:
Journal Name:
eneuro
Volume:
10
Issue:
1
ISSN:
2373-2822
Page Range / eLocation ID:
Article No. ENEURO.0144-22.2022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The goal of item response theoretic (IRT) models is to provide estimates of latent traits from binary observed indicators and at the same time to learn the item response funcitons (IRFs) that map from latent trait to observed response. However, in many cases observed behavior can deviate significantly from the parametric assumptions of traditional IRT models. Nonparametric IRT (NIRT) models overcome these challenges by relaxing assumptions about the form of the IRFs, but standard tools are unable to simultaneously estimate flexible IRFs and recover ability estimates for respondents. We propose a Bayesian nonparametric model that solves this problem by placing Gaussian process priors on the latent functions defining the IRFs. This allows us to simultaneously relax assumptions about the shape of the IRFs while preserving the ability to estimate latent traits. This in turn allows us to easily extend the model to further tasks such as active learning. GPIRT therefore provides a simple and intuitive solution to several longstanding problems in the IRT literature. 
    more » « less
  2. Soltani, Alireza (Ed.)
    To interpret the sensory environment, the brain combines ambiguous sensory measurements with knowledge that reflects context-specific prior experience. But environmental contexts can change abruptly and unpredictably, resulting in uncertainty about the current context. Here we address two questions: how should context-specific prior knowledge optimally guide the interpretation of sensory stimuli in changing environments, and do human decision-making strategies resemble this optimum? We probe these questions with a task in which subjects report the orientation of ambiguous visual stimuli that were drawn from three dynamically switching distributions, representing different environmental contexts. We derive predictions for an ideal Bayesian observer that leverages knowledge about the statistical structure of the task to maximize decision accuracy, including knowledge about the dynamics of the environment. We show that its decisions are biased by the dynamically changing task context. The magnitude of this decision bias depends on the observer’s continually evolving belief about the current context. The model therefore not only predicts that decision bias will grow as the context is indicated more reliably, but also as the stability of the environment increases, and as the number of trials since the last context switch grows. Analysis of human choice data validates all three predictions, suggesting that the brain leverages knowledge of the statistical structure of environmental change when interpreting ambiguous sensory signals. 
    more » « less
  3. Abstract Bayesian data analysis is increasingly used in ecology, but prior specification remains focused on choosing non‐informative priors (e.g., flat or vague priors). One barrier to choosing more informative priors is that priors must be specified on model parameters (e.g., intercepts, slopes, and sigmas), but prior knowledge often exists on the level of the response variable. This is particularly true for common models in ecology, like generalized linear mixed models that have a link function and potentially dozens of parameters, each of which needs a prior distribution. We suggest that this difficulty can be overcome by simulating from the prior predictive distribution and visualizing the results on the scale of the response variable. In doing so, some common choices for non‐informative priors on parameters can easily be seen to produce biologically impossible values of response variables. Such implications of prior choices are difficult to foresee without visualization. We demonstrate a workflow for prior selection using simulation and visualization with two ecological examples (predator–prey body sizes and spider responses to food competition). This approach is not new, but its adoption by ecologists will help to better incorporate prior information in ecological models, thereby maximizing one of the benefits of Bayesian data analysis. 
    more » « less
  4. Abstract This paper develops manifold learning techniques for the numerical solution of PDE-constrained Bayesian inverse problems on manifolds with boundaries. We introduce graphical Matérn-type Gaussian field priors that enable flexible modeling near the boundaries, representing boundary values by superposition of harmonic functions with appropriate Dirichlet boundary conditions. We also investigate the graph-based approximation of forward models from PDE parameters to observed quantities. In the construction of graph-based prior and forward models, we leverage the ghost point diffusion map algorithm to approximate second-order elliptic operators with classical boundary conditions. Numerical results validate our graph-based approach and demonstrate the need to design prior covariance models that account for boundary conditions. 
    more » « less
  5. Abstract Reconstructing images from the Event Horizon Telescope (EHT) observations of M87*, the supermassive black hole at the center of the galaxy M87, depends on a prior to impose desired image statistics. However, given the impossibility of directly observing black holes, there is no clear choice for a prior. We present a framework for flexibly designing a range of priors, each bringing different biases to the image reconstruction. These priors can be weak (e.g., impose only basic natural-image statistics) or strong (e.g., impose assumptions of black hole structure). Our framework uses Bayesian inference with score-based priors, which are data-driven priors arising from a deep generative model that can learn complicated image distributions. Using our Bayesian imaging approach with sophisticated data-driven priors, we can assess how visual features and uncertainty of reconstructed images change depending on the prior. In addition to simulated data, we image the real EHT M87* data and discuss how recovered features are influenced by the choice of prior. 
    more » « less