skip to main content


Search for: All records

Award ID contains: 1846210

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The conditional average treatment effect (CATE) is the best measure of individual causal effects given baseline covariates. However, the CATE only captures the (conditional) average, and can overlook risks and tail events, which are important to treatment choice. In aggregate analyses, this is usually addressed by measuring the distributional treatment effect (DTE), such as differences in quantiles or tail expectations between treatment groups. Hypothetically, one can similarly fit conditional quantile regressions in each treatment group and take their difference, but this would not be robust to misspecification or provide agnostic best-in-class predictions. We provide a new robust and model-agnostic methodology for learning the conditional DTE (CDTE) for a class of problems that includes conditional quantile treatment effects, conditional super-quantile treatment effects, and conditional treatment effects on coherent risk measures given by f-divergences. Our method is based on constructing a special pseudo-outcome and regressing it on covariates using any regression learner. Our method is model-agnostic in that it can provide the best projection of CDTE onto the regression model class. Our method is robust in that even if we learn these nuisances nonparametrically at very slow rates, we can still learn CDTEs at rates that depend on the class complexity and even conduct inferences on linear projections of CDTEs. We investigate the behavior of our proposal in simulations, as well as in a case study of 401(k) eligibility effects on wealth. 
    more » « less
  2. We study a nonparametric contextual bandit problem in which the expected reward functions belong to a Hölder class with smoothness parameter β. We show how this interpolates between two extremes that were previously studied in isolation: nondifferentiable bandits (β at most 1), with which rate-optimal regret is achieved by running separate noncontextual bandits in different context regions, and parametric-response bandits (infinite [Formula: see text]), with which rate-optimal regret can be achieved with minimal or no exploration because of infinite extrapolatability. We develop a novel algorithm that carefully adjusts to all smoothness settings, and we prove its regret is rate-optimal by establishing matching upper and lower bounds, recovering the existing results at the two extremes. In this sense, our work bridges the gap between the existing literature on parametric and nondifferentiable contextual bandit problems and between bandit algorithms that exclusively use global or local information, shedding light on the crucial interplay of complexity and regret in contextual bandits. 
    more » « less
  3. We study contextual stochastic optimization problems, where we leverage rich auxiliary observations (e.g., product characteristics) to improve decision making with uncertain variables (e.g., demand). We show how to train forest decision policies for this problem by growing trees that choose splits to directly optimize the downstream decision quality rather than split to improve prediction accuracy as in the standard random forest algorithm. We realize this seemingly computationally intractable problem by developing approximate splitting criteria that use optimization perturbation analysis to eschew burdensome reoptimization for every candidate split, so that our method scales to large-scale problems. We prove that our splitting criteria consistently approximate the true risk and that our method achieves asymptotic optimality. We extensively validate our method empirically, demonstrating the value of optimization-aware construction of forests and the success of our efficient approximations. We show that our approximate splitting criteria can reduce running time hundredfold while achieving performance close to forest algorithms that exactly reoptimize for every candidate split. This paper was accepted by Hamid Nazerzadeh, data science. 
    more » « less
  4. Off-policy evaluation (OPE) in reinforcement learning is notoriously difficult in long- and infinite-horizon settings due to diminishing overlap between behavior and target policies. In this paper, we study the role of Markovian and time-invariant structure in efficient OPE. We first derive the efficiency bounds and efficient influence functions for OPE when one assumes each of these structures. This precisely characterizes the curse of horizon: in time-variant processes, OPE is only feasible in the near-on-policy setting, where behavior and target policies are sufficiently similar. But, in time-invariant Markov decision processes, our bounds show that truly off-policy evaluation is feasible, even with only just one dependent trajectory, and provide the limits of how well we could hope to do. We develop a new estimator based on double reinforcement learning (DRL) that leverages this structure for OPE. Our DRL estimator simultaneously uses estimated stationary density ratios and q-functions and remains efficient when both are estimated at slow, nonparametric rates and remains consistent when either is estimated consistently. We investigate these properties and the performance benefits of leveraging the problem structure for more efficient OPE. 
    more » « less
  5. We study Reinforcement Learning for partially observable systems using function approximation. We propose a new PO-bilinear framework, that is general enough to include models such as undercomplete tabular Partially Observable Markov Decision Processes (POMDPs), Linear Quadratic Gaussian (LQG), Predictive State Representations (PSRs), as well as a newly introduced model Hilbert Space Embeddings of POMDPs. Under this framework, we propose an actor-critic style algorithm that is capable to performing agnostic policy learning. Given a policy class that consists of memory based policies (i.e., policy that looks at a fixed-length window of recent observations), and a value function class that consists of functions taking both memory and future observations as inputs, our algorithm learns to compete against the best memory-based policy among the policy class. For certain examples such as undercomplete POMDPs and LQGs, by leveraging their special properties, our algorithm is even capable of competing against the globally optimal policy without paying an exponential dependence on the horizon. 
    more » « less
  6. Epistemic uncertainty quantification is a crucial part of drawing credible conclusions from predictive models, whether concerned about the prediction at a given point or any downstream evaluation that uses the model as input. When the predictive model is simple and its evaluation differentiable, this task is solved by the delta method, where we propagate the asymptotically-normal uncertainty in the predictive model through the evaluation to compute standard errors and Wald confidence intervals. However, this becomes difficult when the model and/or evaluation becomes more complex. Remedies include the bootstrap, but it can be computationally infeasible when training the model even once is costly. In this paper, we propose an alternative, the implicit delta method, which works by infinitesimally regularizing the training loss of the predictive model to automatically assess downstream uncertainty. We show that the change in the evaluation due to regularization is consistent for the asymptotic variance of the evaluation estimator, even when the infinitesimal change is approximated by a finite difference. This provides both a reliable quantification of uncertainty in terms of standard errors as well as permits the construction of calibrated confidence intervals. We discuss connections to other approaches to uncertainty quantification, both Bayesian and frequentist, and demonstrate our approach empirically. 
    more » « less
  7. We study representation learning for Offline Reinforcement Learning (RL), focusing on the important task of Offline Policy Evaluation (OPE). Recent work shows that, in contrast to supervised learning, realizability of the Q-function is not enough for learning it. Two sufficient conditions for sample-efficient OPE are Bellman completeness and coverage. Prior work often assumes that representations satisfying these conditions are given, with results being mostly theoretical in nature. In this work, we propose BCRL, which directly learns from data an approximately linear Bellman complete representation with good coverage. With this learned representation, we perform OPE using Least Square Policy Evaluation (LSPE) with linear functions in our learned representation. We present an end-to-end theoretical analysis, showing that our two-stage algorithm enjoys polynomial sample complexity provided some representation in the rich class considered is linear Bellman complete. Empirically, we extensively evaluate our algorithm on challenging, image-based continuous control tasks from the Deepmind Control Suite. We show our representation enables better OPE compared to previous representation learning methods developed for off-policy RL (e.g., CURL, SPR). BCRL achieve competitive OPE error with the state-of-the-art method Fitted Q-Evaluation (FQE), and beats FQE when evaluating beyond the initial state distribution. Our ablations show that both linear Bellman complete and coverage components of our method are crucial. 
    more » « less
  8. Incorporating side observations in decision making can reduce uncertainty and boost performance, but it also requires that we tackle a potentially complex predictive relationship. Although one may use off-the-shelf machine learning methods to separately learn a predictive model and plug it in, a variety of recent methods instead integrate estimation and optimization by fitting the model to directly optimize downstream decision performance. Surprisingly, in the case of contextual linear optimization, we show that the naïve plug-in approach actually achieves regret convergence rates that are significantly faster than methods that directly optimize downstream decision performance. We show this by leveraging the fact that specific problem instances do not have arbitrarily bad near-dual-degeneracy. Although there are other pros and cons to consider as we discuss and illustrate numerically, our results highlight a nuanced landscape for the enterprise to integrate estimation and optimization. Our results are overall positive for practice: predictive models are easy and fast to train using existing tools; simple to interpret; and, as we show, lead to decisions that perform very well. This paper was accepted by Hamid Nazerzadeh, data science. 
    more » « less
  9. We study off-policy evaluation and learning from sequential data in a structured class of Markov decision processes that arise from repeated interactions with an exogenous sequence of arrivals with contexts, which generate unknown individual-level responses to agent actions. This model can be thought of as an offline generalization of contextual bandits with resource constraints. We formalize the relevant causal structure of problems such as dynamic personalized pricing and other operations management problems in the presence of potentially high-dimensional user types. The key insight is that an individual-level response is often not causally affected by the state variable and can therefore easily be generalized across timesteps and states. When this is true, we study implications for (doubly robust) off-policy evaluation and learning by instead leveraging single time-step evaluation, estimating the expectation over a single arrival via data from a population, for fitted-value iteration in a marginal MDP. We study sample complexity and analyze error amplification that leads to the persistence, rather than attenuation, of confounding error over time. In simulations of dynamic and capacitated pricing, we show improved out-of-sample policy performance in this class of relevant problems. 
    more » « less
  10. Off-policy evaluation and learning (OPE/L) use offline observational data to make better decisions, which is crucial in applications where online experimentation is limited. However, depending entirely on logged data, OPE/L is sensitive to environment distribution shifts — discrepancies between the data-generating environment and that where policies are deployed. Si et al., (2020) proposed distributionally robust OPE/L (DROPE/L) to address this, but the proposal relies on inverse-propensity weighting, whose estimation error and regret will deteriorate if propensities are nonparametrically estimated and whose variance is suboptimal even if not. For standard, non-robust, OPE/L, this is solved by doubly robust (DR) methods, but they do not naturally extend to the more complex DROPE/L, which involves a worst-case expectation. In this paper, we propose the first DR algorithms for DROPE/L with KL-divergence uncertainty sets. For evaluation, we propose Localized Doubly Robust DROPE (LDR2 OPE) and show that it achieves semiparametric efficiency under weak product rates conditions. Thanks to a localization technique, LDR2 OPE only requires fitting a small number of regressions, just like DR methods for standard OPE. For learning, we propose Continuum Doubly Robust DROPL (CDR2 OPL) and show that, under a product rate condition involving a continuum of regressions, it enjoys a fast regret rate of 𝑂(𝑁−1/2) even when unknown propensities are nonparametrically estimated. We empirically validate our algorithms in simulations and further extend our results to general 𝑓 -divergence uncertainty sets. 
    more » « less