skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling the Intermittent Lava Lake Drops Occurring Between 2015 and 2021 at Nyiragongo Volcano
Abstract Between 2015 and 2021, Nyiragongo's lava lake level experienced a linear increase punctuated by fast intermittent drops. These drops occurred synchronously to seismic swarm at approximately 15 km below the surface and extending laterally NE from the volcano. To interpret these lava lake level patterns in terms of reservoirs pressure evolution within Nyiragongo, we consider the following simplified plumbing system: a central reservoir is fed by a constant flux of magma, distributing the fluid up into the lava lake and laterally into a distal storage zone. Magma transport is driven by a pressure gradient between the magma storage bodies, accommodating influx and outflow of magma elastically, and the lava lake. Lateral transport at depth occurs through a hydraulic connection for which the flow resistance is coupled to the magma flux. When the right conditions are met, lateral magma transport occurs intermittently and triggers intermittent lava lake level drops matching the observations.  more » « less
Award ID(s):
1923943 2151005 1945417
PAR ID:
10406781
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
8
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Very‐long‐period (VLP) volcano seismicity often encodes subsurface magma movement, and thus provides insight into subsurface magma transport processes. We develop a fully automated signal processing workflow using wavelet transforms to detect and assess period, decay rate, and ground motions of resonant VLP signals. We then generate a VLP catalog over the 2008–2018 open‐vent summit eruption of Kīlauea Volcano containing thousands of events. Two types of magma resonance dominate our catalog: vertical sloshing of the open magma column in and out of the shallow magma reservoir, and lateral sloshing of magma in the lava lake. These events were triggered mainly from the surface and less commonly from depth. The VLP catalog is then combined with other geophysical datasets to characterize evolution of the shallow magma system. VLP ground motion patterns show both abrupt and gradual changes in shallow magma reservoir geometry. Variation in resonant periods and decay rates of both resonance types occurred on timescales from hours to years, indicating variation in magma density and viscosity that likely reflect unsteady shallow outgassing and convection. A lack of correlation between decay rates of the two dominant resonant modes suggests a decoupling between magma in the conduit and lava lake. Known intrusions and rift zone eruptions often represented change points for resonance characteristics and their relations with other datasets. This data synthesis over a 10‐year eruptive episode at Klauea Volcano demonstrates how VLP seismicity can sharpen insights into magma system evolution for use in monitoring and understanding eruptive processes. 
    more » « less
  2. Abstract Classical mechanisms of volcanic eruptions mostly involve pressure buildup and magma ascent towards the surface1. Such processes produce geophysical and geochemical signals that may be detected and interpreted as eruption precursors1–3. On 22 May 2021, Mount Nyiragongo (Democratic Republic of the Congo), an open-vent volcano with a persistent lava lake perched within its summit crater, shook up this interpretation by producing an approximately six-hour-long flank eruption without apparent precursors, followed—rather than preceded—by lateral magma motion into the crust. Here we show that this reversed sequence was most likely initiated by a rupture of the edifice, producing deadly lava flows and triggering a voluminous 25-km-long dyke intrusion. The dyke propagated southwards at very shallow depth (less than 500 m) underneath the cities of Goma (Democratic Republic of the Congo) and Gisenyi (Rwanda), as well as Lake Kivu. This volcanic crisis raises new questions about the mechanisms controlling such eruptions and the possibility of facing substantially more hazardous events, such as effusions within densely urbanized areas, phreato-magmatism or a limnic eruption from the gas-rich Lake Kivu. It also more generally highlights the challenges faced with open-vent volcanoes for monitoring, early detection and risk management when a significant volume of magma is stored close to the surface. 
    more » « less
  3. Abstract Erebus volcano, Antarctica, with its persistent phonolite lava lake, is a classic example of an evolved, CO 2 -rich rift volcano. Seismic studies provide limited images of the magmatic system. Here we show using magnetotelluric data that a steep, melt-related conduit of low electrical resistivity originating in the upper mantle undergoes pronounced lateral re-orientation in the deep crust before reaching shallower magmatic storage and the summit lava lake. The lateral turn represents a structural fault-valve controlling episodic flow of magma and CO 2 vapour, which replenish and heat the high level phonolite differentiation zone. This magmatic valve lies within an inferred, east-west structural trend forming part of an accommodation zone across the southern termination of the Terror Rift, providing a dilatant magma pathway. Unlike H 2 O-rich subduction arc volcanoes, CO 2 -dominated Erebus geophysically shows continuous magmatic structure to shallow crustal depths of < 1 km, as the melt does not experience decompression-related volatile supersaturation and viscous stalling. 
    more » « less
  4. null (Ed.)
    The first eruption at Kīlauea’s summit in 25 years began on March 19, 2008, and persisted for 10 years. The onset of the eruption marked the first explosive activity at the summit since 1924, forming the new “Overlook crater” (as the 2008 summit eruption crater has been informally named) within the existing crater of Halemaʻumaʻu. The first year consisted of sporadic lava activity deep within the Overlook crater. Occasional small explosions deposited spatter and small wall-rock lithic pieces around the Halemaʻumaʻu rim. After a month-long pause at the end of 2008, deep sporadic lava lake activity returned in 2009. Continuous lava lake activity began in February 2010. The lake rose significantly in late 2010 and early 2011, before subsequently draining briefly in March 2011. This disruption of the summit eruption was triggered by eruptive activity on the East Rift Zone. Rising lake levels through 2012 established a more stable, larger lake in 2013, with continued enlargement over the subsequent 5 years. Lava reached the Overlook crater rim and overflowed on the Halemaʻumaʻu floor in brief episodes in 2015, 2016, and 2018, but the lake level was more commonly 20–60 meters below the rim during 2014–18. The lake was approximately 280×200 meters (~42,000 square meters) by early 2018 and formed one of the two largest lava lakes on Earth. A new eruption began in the lower East Rift Zone on May 3, 2018, causing magma to drain from the summit reservoir complex. The lava in Halemaʻumaʻu had drained below the crater floor by May 10, followed by collapse of the Overlook and Halemaʻumaʻu craters. The collapse region expanded as much of the broader summit caldera floor subsided incrementally during June and July. By early August 2018, the collapse sequence had ended, and the summit was quiet. The historic changes in May–August 2018 brought a dramatic end to the decade of sustained activity at Kīlauea’s summit. The unique accessibility of the 2008–18 lava lake provided new observations of lava lake behavior and open-vent basaltic outgassing. Data indicated that explosions were triggered by rockfalls from the crater walls, that the lake consisted of a low-density foamy lava, that cycles of gas pistoning were rooted at shallow depths in the lake, and that lake level fluctuations were closely tied to the pressure of the summit magma reservoir. Lava chemistry added further support for an efficient hydraulic connection between the summit and East Rift Zone. Notwithstanding the benefits to scientific understanding, the eruption presented a persistent hazard of volcanic air pollution (vog) that commonly extended far from Kīlauea’s summit. 
    more » « less
  5. Magma mingling and mixing are common processes at basaltic volcanoes and play a fundamental role in magma petrogenesis and eruption dynamics. Mingling occurs most commonly when hot primitive magma is introduced into cooler magma. Here, we investigate a scenario whereby cool, partially degassed lava is drained back into a conduit, where it mingles with hotter, less degassed magma. The 1959 eruption of Kīlauea Iki, Hawaiʻi involved 16 high fountaining episodes. During each episode, fountains fed a lava lake in a pit crater, which then partially drained back into the conduit during and after each episode. We infer highly crystalline tachylite inclusions and streaks in the erupted crystal-poor scoria to be the result of the recycling of this drain-back lava. The crystal phases present are dendrites of plagioclase, augite and magnetite/ilmenite, at sizes of up to 10 μm. Host sideromelane glass contains 7–8 wt% MgO and the tachylite glass (up to 0.5% by area) contains 2.5–6 wt% MgO. The vesicle population in the tachylite is depleted in the smallest size classes (< 0.5 mm) and has overall lower vesicle number densities and a higher degree of vesicle coalescence than the sideromelane component. The tachylite exhibits increasingly complex ‘stretching and folding’ mingling textures through the episodes, with discrete blocky tachylite inclusions in episodes 1 and 3 giving way to complex, folded, thin filaments of tachylite in pyroclasts erupted in episodes 15 and 16. We calculate that a lava lake crust 8–35 cm thick may have formed in the repose times between episodes, and then foundered and been entrained into the conduit during drain-back. The recycled fragments of crust would have been reheated in the conduit, inducing glass devitrification and crystallisation of pyroxene, magnetite and plagioclase dendrites and eventually undergoing ductile flow as the temperature of the fragments approached the host magma temperature. We use simple models of magma mingling to establish that stretching and folding of recycled, ductile lava could involve thinning of the clasts by up to a factor of 10 during the timescale of the eruption, consistent with observations of streaks and filaments of tachylite erupted during episodes 15 and 16, which may have undergone multiple cycles of eruption, drain-back and reheating. 
    more » « less