The science of volcanology advances disproportionately during exceptionally large or well-observed eruptions. The 2018 eruption of Kīlauea Volcano (Hawai‘i) was its most impactful in centuries, involving an outpouring of more than one cubic kilometer of basalt, a magnitude 7 flank earthquake, and the volcano's largest summit collapse since at least the nineteenth century. Eruptive activity was documented in detail, yielding new insights into large caldera-rift eruptions; the geometry of a shallow magma storage-transport system and its interaction with rift zone tectonics; mechanisms of basaltic tephra-producing explosions; caldera collapse mechanics; and the dynamics of fissure eruptions and high-volume lava flows. Insights are broadly applicable to a range of volcanic systems and should reduce risk from future eruptions. Multidisciplinary collaboration will be required to fully leverage the diversity of monitoring data to address many of the most important outstanding questions. ▪ Unprecedented observations of a caldera collapse and coupled rift zone eruption yield new opportunities for advancing volcano science. ▪ Magma flow to a low-elevation rift zone vent triggered quasi-periodic step-like collapse of a summit caldera, which pressurized the magma system and sustained the eruption. ▪ Kīlauea's magmatic-tectonic system is tightly interconnected over tens of kilometers, with complex feedback mechanisms and interrelated hazards over widely varying time scales. ▪ The eruption revealed magma stored in diverse locations, volumes, and compositions, not only beneath the summit but also within the volcano's most active rift zone. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
more »
« less
Kīlauea’s 2008–2018 Summit Lava Lake—Chronology and Eruption Insights
The first eruption at Kīlauea’s summit in 25 years began on March 19, 2008, and persisted for 10 years. The onset of the eruption marked the first explosive activity at the summit since 1924, forming the new “Overlook crater” (as the 2008 summit eruption crater has been informally named) within the existing crater of Halemaʻumaʻu. The first year consisted of sporadic lava activity deep within the Overlook crater. Occasional small explosions deposited spatter and small wall-rock lithic pieces around the Halemaʻumaʻu rim. After a month-long pause at the end of 2008, deep sporadic lava lake activity returned in 2009. Continuous lava lake activity began in February 2010. The lake rose significantly in late 2010 and early 2011, before subsequently draining briefly in March 2011. This disruption of the summit eruption was triggered by eruptive activity on the East Rift Zone. Rising lake levels through 2012 established a more stable, larger lake in 2013, with continued enlargement over the subsequent 5 years. Lava reached the Overlook crater rim and overflowed on the Halemaʻumaʻu floor in brief episodes in 2015, 2016, and 2018, but the lake level was more commonly 20–60 meters below the rim during 2014–18. The lake was approximately 280×200 meters (~42,000 square meters) by early 2018 and formed one of the two largest lava lakes on Earth. A new eruption began in the lower East Rift Zone on May 3, 2018, causing magma to drain from the summit reservoir complex. The lava in Halemaʻumaʻu had drained below the crater floor by May 10, followed by collapse of the Overlook and Halemaʻumaʻu craters. The collapse region expanded as much of the broader summit caldera floor subsided incrementally during June and July. By early August 2018, the collapse sequence had ended, and the summit was quiet. The historic changes in May–August 2018 brought a dramatic end to the decade of sustained activity at Kīlauea’s summit. The unique accessibility of the 2008–18 lava lake provided new observations of lava lake behavior and open-vent basaltic outgassing. Data indicated that explosions were triggered by rockfalls from the crater walls, that the lake consisted of a low-density foamy lava, that cycles of gas pistoning were rooted at shallow depths in the lake, and that lake level fluctuations were closely tied to the pressure of the summit magma reservoir. Lava chemistry added further support for an efficient hydraulic connection between the summit and East Rift Zone. Notwithstanding the benefits to scientific understanding, the eruption presented a persistent hazard of volcanic air pollution (vog) that commonly extended far from Kīlauea’s summit.
more »
« less
- Award ID(s):
- 1829188
- PAR ID:
- 10240311
- Date Published:
- Journal Name:
- US Geological Survey professional paper
- Volume:
- 1867
- Issue:
- A
- ISSN:
- 1044-9612
- Page Range / eLocation ID:
- 1-62
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The 2008–2018 lava lake at the summit of Kīlauea marked the longest sustained period of lava lake activity at the summit in decades and provided a new opportunity for observing and understanding lava lake behavior. This paper cover the basic chronology of the eruption, rich historical background, observations and measurements of lake activity, hydrological setting, as well as geophysical and other monitoring data that tracked the activity. The primary focus is the 2008–2018 lava lake activity, ending with the draining of the lake in May 2018. The 2018 summit collapse events that followed the lake draining, and which dramatically altered the topography of the summit region, are published elsewhere.more » « less
-
Abstract The intrusion of magma into Kīlauea's lower East Rift Zone in May 2018 led to the largest eruption along this segment of the volcano in over 200 years. As magma drained from the rift zone, leading to the collapse of Pu'u ‘Ō‘ō, pressure at the summit initially remained elevated and dropped at a slower rate compared to historical intrusion events. The anomalously long timescale of summit deflation suggests that the dike was fed from multiple sources. Here we show that dikes can serve as “dipsticks” of magma reservoirs and that the co‐evolution of dike growth and reservoir deflation constrains key magma transport parameters. Using coupled dike‐chamber models constrained by ground deformation and seismicity, we test four configurations of magma plumbing in order to illuminate which reservoirs and transport pathways were activated during the intrusion phase (30 April to 3 May) of the 2018 event. Slow summit deflation relative to the rate of dike propagation is best explained by a model in which the dike initiates from a compressible magma reservoir in the East Rift Zone, which then drains magma upstream from the Halema'uma'u reservoir through a shallow transport system. We use a Bayesian Markov chain Monte Carlo (MCMC) approach to estimate storage parameters for both reservoirs as well as the effective conductivity of the shallow magma transport system in the East Rift Zone, finding good agreement with independent estimates. Our results suggest that the rupture of reservoirs from within the East Rift Zone presents a unique hazard at Kīlauea.more » « less
-
Abstract Magmatic systems below volcanoes are often dominated by partially crystalline magma over the long term. Rejuvenation of these systems during eruptive events can impact lava composition and eruption style—sometimes resulting in more violent or explosive activity than would be expected, as was the case at Fissure 17 during Kīlauea’s 2018 eruption. Here, we explore how the crystallinity of unerupted intrusion magmas affect hybrid magma compositions and petrological signatures by constructing phase-equilibria models to evaluate mineral and melt compositions of low-MgO lavas erupted along the East Rift Zone of Kīlauea volcano on 30 to 31 January 1997 (Episode 54, Fissures A-F). We then compare calculated mixing proportions and petrologically derived magma volumes to GPS-based geodetic inversions of ground deformation and intrusion growth in an attempt to reconcile geodetic and petrologically estimated magma volumes. Open-system phase-equilibria thermodynamic models were used to constrain the composition, degree of differentiation, and thermodynamic state of a rift-stored, two pyroxene + plagioclase saturated low-MgO magma body immediately preceding its mixing with high-MgO recharge and degassed drainback (lava lake) magma from Pu‘u‘ō‘ō‘, shortly before fissure activity within Nāpau Crater began on 29 January 1997. Mixing models constructed using the Magma Chamber Simulator reproduce the mineralogy and compositions of Episode 54 lavas within uncertainties and suggest that the identity of the low-MgO magma body may be either variably differentiated remnants of un-erupted magmas intruded into Nāpau Crater in October 1968, or another spatially and compositionally similar magma body. We find that magmas derived from a single, compositionally stratified magma emplaced beneath Nāpau Crater in 1968 can mix with mafic Kīlauea magmas to reproduce average Episode 54 bulk lava, mineralogy and mineral compositions without necessitating the interaction of multiple, low-MgO rift-stored magma bodies to produce Episode 54 lava compositions. Further, by constructing phase equilibria-based mixing models of Episode 54, we can better define the pre-eruptive state of the magmatic system. The resultant mineral assemblages and compositions are consistent with the possibility that the now-fractionated, rift-stored magma body was compositionally stratified and ~ 40% to 50% crystalline at the time of mixing. Finally, we estimate the volume of the low-MgO magma body to be ~7.51 Mm3. Phase-equilibria model results corroborate field and geochemical relationships demonstrating how shallow intrusions at intraplate shield volcanoes can crystallize, evolve, and then be remobilized by new, later batches of mafic magma. Most notably, our MCS models demonstrate that the pre-eruptive conditions of an intrusive body may be recovered by examining mineral compositions within mixed lavas. Discrepancies between the geodetic constraints on volumes of stored rift versus newly intruded (recharge) magma and our best-fit results produced by MCS mixing models (which respectively are mmafic:mlow-MgO ≈ 2 vs. mmafic:mlow-MgO ≈ 0.75) are interpreted to highlight the complex nature of incomplete mixing on more localized scales as reflected in erupted lavas, compared to geodetically constrained volumes that likely reflect large spatial scale contributions to a magmatic system. These dissimilar volume relationships may also help to constrain eruptive versus unerupted volumes in magmatic systems undergoing mixing. By demonstrating the usefulness of MCS in modeling past eruptions, we highlight the potential to use it as a tool to aid in petrologic monitoring of ongoing activity.more » « less
-
Abstract Abundant seismicity beneath the Island of Hawai‘i from mantle depths to the surface plays a central role in understanding how volcanoes work, grow, and evolve at this intraplate oceanic hotspot. We perform systematic waveform cross‐correlation, cluster analysis, and relative relocation of 347,445 events representing 32 years of seismicity on and around the island from 1986 to 2018. We successfully relocate 275,009 (79%) events using ∼1.7 billion differential times (PandS) from ∼128 million similar‐event pairs. The results reveal a dramatic sharpening of seismicity along faults, streaks, rings, rift zones, magma pathways, and mantle fault zones; seismicity delineating crustal detachments on the flanks of Kīlauea and Mauna Loa is particularly well‐resolved. The resulting high‐precision spatio‐temporal image of seismicity captures almost the entire 1983–2018 Pu‘u ‘Ō‘ō‐Kūpaianaha eruption of Kīlauea with its numerous distinct episodes and wide‐ranging activity, culminating in the 2018 lower East Rift Zone eruption and summit collapse.more » « less