skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sex-specific effects of a parasite on stress-induced freezing behavior in a natural beetle-nematode system
Some animals react to predation threats or other stressors by adopting a freezing posture in an attempt to avoid detection, and the duration of this behavior usually corresponds with individual personality, such that timid individuals freeze longer. Despite decades of research on this or related behaviors (thanatosis), never has the impact of parasitism been considered. Parasites could prolong the duration, if hosts are less motivated to move (i.e. lethargic), or they could reduce it, if hosts are motivated to forage more to compensate for energy drain. We examined this behavior within a natural beetle-nematode system, where hosts (horned passalus beetles, Odontotaenius disjunctus ) are parasitized by a nematode, Chondronema passali . We exposed beetles (n = 238) to four stressors in our lab, including noise, vibration, light and inversion, and recorded how long they adopt a frozen stance. Afterward, we determined nematode burdens, which can range from dozens to hundreds of worms. Beetles tended to freeze for 20 seconds on average, with some variation between stressors. We detected no effect of beetle mass on the duration of freezing, and this behavior did not differ in beetles collected during the breeding or non-breeding season. There was a surprising sex-based difference in the impact of nematodes; unparasitized females remained frozen twice as long as unparasitized males, but for beetles with heavy nematode burdens, the opposite was true. From this we infer that heavily parasitized females are more bold, while males with heavy burdens would be more timid. The explanation for this finding remains elusive, though we can rule out many possibilities based on prior work on this host-parasite system.  more » « less
Award ID(s):
1659683
PAR ID:
10406849
Author(s) / Creator(s):
; ; ;
Editor(s):
Lutermann, Heike
Date Published:
Journal Name:
PLOS ONE
Volume:
18
Issue:
3
ISSN:
1932-6203
Page Range / eLocation ID:
e0281149
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. How and to what degree an animal deals with potential threats is a fascinating topic that has been well-researched, particularly in insects, though usually not with the impact of parasites in mind. A growing body of work is showing how even benign parasites can affect, positively or negatively, their hosts’ physiological or behavioral reaction to threats. With this in mind we conducted an experiment using horned passalus beetles, Odontotaenius disjunctus that were naturally parasitized with a nematode Chondronema passali; we subjected beetles to simulated attacks (resembling rival fighting or predator attacks) and from videos of the encounters we quantified a suite of behaviors (antennae movement, aggressive posturing, threat displays, etc.), plus rates of alarm calls (stridulations) which all correspond to the “fight or flight” reaction. We obtained behavioral and parasite data from 140 beetles from two field collections, of which half had been housed in our lab for three weeks in conditions that would be stressful (little cover for burrowing). We observed a wide range of behaviors during the simulated attack procedure, from beetles offering little resistance to those which were extremely aggressive, though most beetles showed a moderate reaction. Alarm calling rates also varied, but surprisingly, these were not correlated with the magnitude of behavioral reactions. Also surprising was that stressful housing did not heighten the physical resistance during attacks, but did elevate alarm calling rate. Importantly, parasitized beetles had significantly reduced physical reactions to attack than those without nematodes (meaning their resistance to the attack was muted). The results concerning parasitism, coupled with prior work in our lab, indicate that the C. passali nematode depresses the hosts’ acute stress, or fight or flight, reaction (likely from its energetic cost), which may make hosts more susceptible to the very dangers that they are coping with during the stress events. 
    more » « less
  2. null (Ed.)
    Abstract Background Increases in temperature variability associated with climate change have critical implications for the phenology of wildlife across the globe. For example, warmer winter temperatures can induce forward shifts in breeding phenology across taxa (“false springs”), which can put organisms at risk of freezing conditions during reproduction or vulnerable early life stages. As human activities continue to encroach on natural ecosystems, it is also important to consider how breeding phenology interacts with other anthropogenic stressors (e.g., pollutants). Using 14 populations of a widespread amphibian (wood frog; Rana sylvatica ), we compared 1) growth; 2) tolerance to a common wetland contaminant (NaCl); and 3) the ability of tadpoles to acclimate to lethal NaCl exposure following sublethal exposure earlier in life. We evaluated these metrics across two breeding seasons (2018 and 2019) and across populations of tadpoles whose parents differed in breeding phenology (earlier- versus later-breeding cohorts). In both years, the earlier-breeding cohorts completed breeding activity prior to a winter storm and later-breeding cohorts completed breeding activities after a winter storm. The freezing conditions that later-breeding cohorts were exposed to in 2018 were more severe in both magnitude and duration than those in 2019. Results In 2018, offspring of the later-breeding cohort were larger but less tolerant of NaCl compared to offspring of the earlier-breeding cohort. The offspring of the earlier-breeding cohort additionally were able to acclimate to a lethal concentration of NaCl following sublethal exposure earlier in life, while the later-breeding cohort became less tolerant of NaCl following acclimation. Interestingly, in 2019, the warmer of the two breeding seasons, we did not detect the negative effects of later breeding phenology on responses to NaCl. Conclusions These results suggest that phenological shifts that expose breeding amphibians to freezing conditions can have cascading consequences on offspring mass and ability to tolerate future stressors but likely depends on the severity of the freeze event. 
    more » « less
  3. Nehring, Volker (Ed.)
    Japanese rhinoceros beetle (Trypoxylus dichotomus) males have exaggerated horns that are used to compete for territories. Larger males with larger horns tend to win these competitions, giving them access to females. Agonistic interactions include what appears to be assessment and often end without escalating to physical combat. However, it is unknown what information competitors use to assess each other. In many insect species chemical signals can carry a range of information, including social position, nutritional state, morphology, and sex. Specifically, cuticular hydrocarbons (CHCs), which are waxes excreted on the surface of insect exoskeletons, can communicate a variety of information. Here, we asked whether CHCs in rhinoceros beetles carry information about sex, body size, and condition that could be used by males during assessment behavior. Multivariate analysis of hydrocarbon composition revealed patterns associated with both sex and body size. We suggest that Rhinoceros beetles could be communicating information through CHCs that would explain behavioral decisions. 
    more » « less
  4. Japanese rhinoceros beetles Tropoxylus dicotomus are distinguished by large, pronged horns extending from the heads of the males. Male beetles use these horns to battle over females and sap feeding territories on trees. These exaggerated structures likely evolved as weapons or as a signal to other beetles of the resource holding potential of an individual. To understand how these structures are used in resolving competition, we staged a series of interactions between males. Half of the beetles were calorie restricted to manipulate condition and trials were conducted with beetles both size matched, and with pairings made by random. Winners and losers were tracked for each fight and behavioral sequences were documented and analyzed. Most interactions did not end with physical fights between the beetles, instead there were contacts and what appeared to be assessment, then one of the beetles retreated and the other claimed the territory. However, in some cases, the horns were used to throw the other beetle from the territory. Both horn size and body size, but not male condition were found to be significant factors predicting fight outcome. 
    more » « less
  5. Dung beetles, which move and bury the feces of vertebrates, are major drivers of ecosystem processes and provide crucial ecosystem services, including secondary seed dispersal. Dung beetles bury seed-containing dung in food caches or in brood balls used for breeding purposes, but little is known about how this behavior will be affected by climate change. We utilized field manipulations to investigate the effect of simulated climate change—including simultaneous increases in temperature mean and variance—on the seed dispersal behavior of two tunneling dung beetle species, Phanaeus vindex and Onthophagus taurus. We placed single adult females into either control or greenhouse treatments along with temperature loggers. We mixed glass beads of three sizes into cow dung to mimic seeds, provided beetles with the dung, and then allowed them to bury dung for either six or nine days. At the end of each trial, we recorded information on dung deposits, including the type (i.e., food cache or brood ball), number, size, burial depth, and the amount of each bead size found in the deposit. We found differences in burial depths of brood balls and food caches within species, as well as differences in the size and amount of beads buried between species. Exposure to higher temperatures resulted in brood balls being buried deeper across species, but did not change the burial depth of food caches. 
    more » « less