skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Direct measurement of fight or flight behavior in a beetle reveals individual variation and the influence of parasitism
How and to what degree an animal deals with potential threats is a fascinating topic that has been well-researched, particularly in insects, though usually not with the impact of parasites in mind. A growing body of work is showing how even benign parasites can affect, positively or negatively, their hosts’ physiological or behavioral reaction to threats. With this in mind we conducted an experiment using horned passalus beetles, Odontotaenius disjunctus that were naturally parasitized with a nematode Chondronema passali; we subjected beetles to simulated attacks (resembling rival fighting or predator attacks) and from videos of the encounters we quantified a suite of behaviors (antennae movement, aggressive posturing, threat displays, etc.), plus rates of alarm calls (stridulations) which all correspond to the “fight or flight” reaction. We obtained behavioral and parasite data from 140 beetles from two field collections, of which half had been housed in our lab for three weeks in conditions that would be stressful (little cover for burrowing). We observed a wide range of behaviors during the simulated attack procedure, from beetles offering little resistance to those which were extremely aggressive, though most beetles showed a moderate reaction. Alarm calling rates also varied, but surprisingly, these were not correlated with the magnitude of behavioral reactions. Also surprising was that stressful housing did not heighten the physical resistance during attacks, but did elevate alarm calling rate. Importantly, parasitized beetles had significantly reduced physical reactions to attack than those without nematodes (meaning their resistance to the attack was muted). The results concerning parasitism, coupled with prior work in our lab, indicate that the C. passali nematode depresses the hosts’ acute stress, or fight or flight, reaction (likely from its energetic cost), which may make hosts more susceptible to the very dangers that they are coping with during the stress events.  more » « less
Award ID(s):
1659683
PAR ID:
10124691
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
PloS one
ISSN:
1932-6203
Page Range / eLocation ID:
e0216387
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lutermann, Heike (Ed.)
    Some animals react to predation threats or other stressors by adopting a freezing posture in an attempt to avoid detection, and the duration of this behavior usually corresponds with individual personality, such that timid individuals freeze longer. Despite decades of research on this or related behaviors (thanatosis), never has the impact of parasitism been considered. Parasites could prolong the duration, if hosts are less motivated to move (i.e. lethargic), or they could reduce it, if hosts are motivated to forage more to compensate for energy drain. We examined this behavior within a natural beetle-nematode system, where hosts (horned passalus beetles, Odontotaenius disjunctus ) are parasitized by a nematode, Chondronema passali . We exposed beetles (n = 238) to four stressors in our lab, including noise, vibration, light and inversion, and recorded how long they adopt a frozen stance. Afterward, we determined nematode burdens, which can range from dozens to hundreds of worms. Beetles tended to freeze for 20 seconds on average, with some variation between stressors. We detected no effect of beetle mass on the duration of freezing, and this behavior did not differ in beetles collected during the breeding or non-breeding season. There was a surprising sex-based difference in the impact of nematodes; unparasitized females remained frozen twice as long as unparasitized males, but for beetles with heavy nematode burdens, the opposite was true. From this we infer that heavily parasitized females are more bold, while males with heavy burdens would be more timid. The explanation for this finding remains elusive, though we can rule out many possibilities based on prior work on this host-parasite system. 
    more » « less
  2. Determining the effects of parasites on host reproduction is key to understanding how parasites affect the underpinnings of selection on hosts. Although infection is expected to be costly, reducing mean fitness, infection could also increase variation in fitness costs among hosts, both of which determine the potential for selection on hosts. To test these ideas, we used a phylogenetically informed meta-analysis of 118 studies to examine how changes in the mean and variance in the outcome of reproduction differed between parasitized and non-parasitized hosts. We found that parasites had severe negative effects on mean fitness, with parasitized hosts suffering reductions in fecundity, viability and mating success. Parasite infection also increased variance in reproduction, particularly fecundity and offspring viability. Surprisingly, parasites had similar effects on viability when either the male or female was parasitized. These results not only provide the first synthetic, comparative, and quantitative summary of the strong deleterious effects of parasites on host reproductive fitness, but also reveal a consistent role for parasites in shaping the opportunity for selection. 
    more » « less
  3. Abstract Despite the ubiquitous nature of parasitism, how parasitism alters the outcome of host–species interactions such as competition, mutualism and predation remains unknown. Using a phylogenetically informed meta‐analysis of 154 studies, we examined how the mean and variance in the outcomes of species interactions differed between parasitized and non‐parasitized hosts. Overall, parasitism did not significantly affect the mean or variance of host–species interaction outcomes, nor did the shared evolutionary histories of hosts and parasites have an effect. Instead, there was considerable variation in outcomes, ranging from strongly detrimental to strongly beneficial for infected hosts. Trophically‐transmitted parasites increased the negative effects of predation, parasites increased and decreased the negative effects of interspecific competition for parasitized and non‐parasitized heterospecifics, respectively, and parasites had particularly strong negative effects on host species interactions in freshwater and marine habitats, yet were beneficial in terrestrial environments. Our results illuminate the diverse ways in which parasites modify critical linkages in ecological networks, implying that whether the cumulative effects of parasitism are considered detrimental depends not only on the interactions between hosts and their parasites but also on the many other interactions that hosts experience. 
    more » « less
  4. Vermeij, Geerat J. (Ed.)
    Rapid warming and sea-level rise are predicted to be major driving forces in shaping coastal ecosystems and their services in the next century. Though forecasts of the multiple and complex effects of temperature and sea-level rise on ecological interactions suggest negative impacts on parasite diversity, the effect of long term climate change on parasite dynamics is complex and unresolved. Digenean trematodes are complex life cycle parasites that can induce characteristic traces on their bivalve hosts and hold potential to infer parasite host-dynamics through time and space. Previous work has demonstrated a consistent association between sea level rise and increasing prevalence of trematode traces, but a number of fundamental questions remain unanswered about this paleoecological proxy. Here we examine the relationships of host size, shape, and functional morphology with parasite prevalence and abundance, how parasites are distributed across hosts, and how all of these relationships vary through time, using the bivalve Chamelea gallina from a Holocene shallow marine succession in the Po coastal plain. Trematode prevalence increased and decreased in association with the transition from a wave-influenced estuarine system to a wave-dominated deltaic setting. Prevalence and abundance of trematode pits are associated with large host body size, reflecting ontogenetic accumulation of parasites, but temporal trends in median host size do not explain prevalence trends. Ongoing work will test the roles of temperature, salinity, and nutrient availability on trematode parasitism. Parasitized bivalves in one sample were shallower burrowers than their non-parasitized counterparts, suggesting that hosts of trematodes can be more susceptible to their predators, though the effect is ephemeral. Like in living parasite-host systems, trematode-induced malformations are strongly aggregated among hosts, wherein most host individuals harbor very few parasites while a few hosts have many. We interpret trace aggregation to support the assumption that traces are a reliable proxy for trematode parasitism in the fossil record. 
    more » « less
  5. Many avian species are negatively impacted by obligate avian brood parasites, which lay their eggs in the nests of host species. The yellow warbler (Setophaga petechia), which is host to the brood-parasitic brown-headed cowbird (Molothrus ater), represents one of the best-replicated study systems assessing antiparasitic host defenses. Over 15 prior studies on yellow warblers have used model-presentation experiments, whereby breeding hosts are exposed to models of brown-headed cowbirds or other nest threats, to test for anti-parasitic defenses unique to this species. Here we present results from our own quasi-replication study of the yellow warbler/brown-headed cowbird system, which used a novel design compared to previous experiments by pivoting to conduct acoustic playback treatments only, rather than presenting visual models with or without calls. We exposed active yellow warbler nests to playbacks of brown-headed cowbird chatters (brood parasite), blue jay (Cyanocitta cristata; nest predator) calls, conspecific “seet” calls (a referential alarm call for brood parasitism risk), conspecific “chip” calls (a generic alarm call), or control wood thrush (Hylocichla mustelina; harmless heterospecific) songs during the incubation stage. Similar to previous studies, we found that female yellow warblers seet called more frequently in response to playbacks of both brood parasitic chatter calls and conspecific seet calls whereas they produced more chip calls in response to the playback of nest predator calls. In contrast, female yellow warblers approached all playbacks to similar distances, which was different from the proximity patterns seen in previous studies. Our study demonstrates the importance of both replicating, and also pivoting, experimental studies on nest defense behaviors, as differences in experimental design can elicit novel behavioral response patterns in the same species. 
    more » « less