Abstract Foreshock transients, including hot flow anomalies (HFAs) and foreshock bubbles (FBs), are frequently observed in the ion foreshock. Their significant dynamic pressure perturbations can disturb the bow shock, resulting in disturbances in the magnetosphere and ionosphere. They can also contribute to particle acceleration at their parent bow shock. These disturbances and particle acceleration caused by the foreshock transients are not yet predictable, however. In this study, we take the first step in establishing a first‐order predictive expansion speed model for FBs (which are simpler than HFAs). Starting with energy conversion from foreshock ions to solar wind ions, we derive the FB expansion speed in the FB's early formation stage and late expansion stage as a function of foreshock and solar wind parameters. We use local hybrid simulations with varying parameters to fit and improve the early stage model and 1D particle‐in‐cell simulations to test the late‐stage model. By comparing model results with Magnetospheric Multiscale (MMS) and Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations, we adjust the late‐stage model and show that it can predict the FB expansion speed. Our study provides a foundation for predictive models of foreshock transient formation and expansion, so that we can eventually forecast their space weather effects and particle acceleration at shocks.
more »
« less
Analytical Model of Foreshock Ion Interaction With a Discontinuity: A Statistical Study
Abstract When a solar wind discontinuity interacts with foreshock ions, foreshock transients such as hot flow anomalies and foreshock bubbles can form. These create significant dynamic pressure perturbations disturbing the bow shock, magnetopause, and magnetosphere‐ionosphere system. However, presently these phenomena are not predictable. In the accompanying paper, we derived analytical equations of foreshock ion partial gyration around a discontinuity and the resultant current density. In this study, we utilize the derived current density strength to model the energy conversion from the foreshock ions, which drives the outward motion or expansion of the solar wind plasma away from the discontinuity. We show that the model expansion speeds match those from local hybrid simulations for varying foreshock ion parameters. Using MMS, we conduct a statistical study showing that the model expansion speeds are moderately correlated with the magnetic field strength variations and the dynamic pressure decreases around discontinuities with correlation coefficients larger than 0.5. We use conjunctions between ARTEMIS and MMS to show that the model expansion speeds are typically large for those already‐formed foreshock transients. Our results show that our model can be reasonably successful in predicting significant dynamic pressure disturbances caused by foreshock ion‐discontinuity interactions. We discuss ways to improve the model in the future.
more »
« less
- PAR ID:
- 10406880
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 128
- Issue:
- 4
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The ion foreshock is very dynamic, characterized by various transient structures that can perturb the bow shock and influence the magnetosphere‐ionosphere system. One important driver of foreshock transients is solar wind directional discontinuities (DDs) that demagnetize foreshock ions leading to a local current. If this current decreases the field strength at the DD, a hot flow anomaly (HFA) can form. Recent hybrid simulations found that when the current increases the field strength at the DD, a compressional structure forms with enhanced density and field strength opposite to HFAs. Using MMS and THEMIS observations, we confirm this situation. We demonstrate that the current geometry driven by the foreshock ions plays a critical role in the formation. The initial gyrophase of foreshock ions, due to their specular reflection, determines whether they can cross the DD. When many of the foreshock ions cannot cross the DD and the local current they drive increases the field strength at the DD, the enhanced field strength inhibits more foreshock ions from crossing the DD, further enhancing the local current. This feedback loop promotes the growth of the compressional structure. Such foreshock ion‐driven compressional structures can result in dynamic pressure enhancements in the magnetosheath, leading to magnetosheath jets. Our study enables prediction of the location and formation probability of such compressional structures and their potential geoeffectiveness.more » « less
-
Abstract In the ion foreshock, hot flow anomalies (HFAs) and foreshock bubbles (FBs) are two types of foreshock transients that have the strongest fluctuations, which can disturb the magnetosphere‐ionosphere system and increase shock acceleration efficiency. They form due to interaction between the foreshock ions and solar wind discontinuities: the direction of the foreshock ion‐driven current and whether it decreases or increases the magnetic field strength behind the discontinuity determine whether the transient's formation can be promoted or suppressed. Thus, to predict the HFA and FB formation and forecast their space weather effects, it is necessary to predict the foreshock ion‐driven current direction. In this study, we derive analytical equations of foreshock ion velocities within discontinuities to estimate foreshock ion‐driven current direction, which provides a quantitative criterion of HFA and FB formation. To validate the criterion, we use Acceleration Reconnection Turbulence & Electrodynamics of Moon's Interaction with the Sun to observe pristine solar wind discontinuities and calculate discontinuity parameters. We use Magnetospheric Multiscale to observe the foreshock ion motion around the discontinuities and show that the data support our model. This study is another step toward a predictive model of HFA and FB formation so that we can forecast their space weather effects at Earth using solar wind observations at lunar orbit or L1.more » « less
-
Abstract The ion foreshock is highly dynamic, disturbing the bow shock and the magnetosphere‐ionosphere system. To forecast foreshock‐driven space weather effects, it is necessary to model foreshock ions as a function of upstream shock parameters. Case studies in the accompanying paper show that magnetosheath ions sometimes exhibit strong field‐aligned asymmetry toward the upstream direction, which may be responsible for enhancing magnetosheath leakage and therefore foreshock ion density. To understand the conditions leading to such asymmetry and the potential for enhanced leakage, we perform case studies and a statistical study of magnetosheath and foreshock region data surrounding ∼500 Time History of Events and Macroscale Interactions during Substorms mission bow shock crossings. We quantify the asymmetry using the heat flux along the field‐aligned direction. We show that the strong field‐aligned heat flux persists across the entire magnetosheath from the magnetopause to the bow shock. Ion distribution functions reveal that the strong heat flux is caused by a secondary thermal population. We find that stronger asymmetry events exhibit heat flux preferentially toward the upstream direction near the bow shock and occur under larger IMF strength and larger solar wind dynamic pressure and/or energy flux. Additionally, we show that near the bow shock, magnetosheath leakage is a significant contributor to foreshock ions, and through enhancing the leakage the magnetosheath ion asymmetry can modulate the foreshock ion velocity and density. Our results imply that likely due to field line draping and compression against the magnetopause that leads to a directional mirror force, modeling the foreshock ions necessitates a more global accounting of downstream conditions.more » « less
-
Abstract We use the three‐dimensional (3‐D) global hybrid code ANGIE3D to simulate the interaction of four solar wind tangential discontinuities (TDs) observed by ARTEMIS P1 from 0740 UT to 0800 UT on 28 December 2019 with the bow shock, magnetosheath, and magnetosphere. We demonstrate how the four discontinuities produce foreshock transients, a magnetosheath cavity‐like structure, and a brief magnetopause crossing observed by THEMIS and MMS spacecraft from 0800 UT to 0830 UT. THEMIS D observed entries into foreshock transients exhibiting low density, low magnetic field strength, and high temperature cores bounded by compressional regions with high densities and high magnetic field strengths. The MMS spacecraft observed cavities with strongly depressed magnetic field strengths and highly deflected velocity in the magnetosheath downstream from the foreshock. Dawnside THEMIS A magnetosheath observations indicate a brief magnetosphere entry exhibiting enhanced magnetic field strength, low density, and decreased and deflected velocity (sunward flow). The solar wind inputs into the 3‐D hybrid simulations resemble those seen by ARTEMIS. We simulate the interaction of four oblique TDs with properties similar to those in the observation. We place virtual spacecraft at the locations where observations were made. The hybrid simulations predict similar characteristics of the foreshock transients, a magnetosheath cavity, and a magnetopause crossing with characteristics similar to those observed by the multi‐spacecraft observations. The detailed and successful comparison of the interaction involving multiple TDs will be presented.more » « less