M64, often called the “Evil Eye” galaxy, is unique among local galaxies. Beyond its dramatic, dusty nucleus, it also hosts an outer gas disk that counter-rotates relative to its stars. The mass of this outer disk is comparable to the gas content of the Small Magellanic Cloud (SMC), prompting the idea that it was likely accreted in a recent minor merger. Yet, detailed follow-up studies of M64's outer disk have shown no evidence of such an event, leading to other interpretations, such as a “flyby” interaction with the distant diffuse satellite Coma P. We present Subaru Hyper Suprime-Cam observations of M64's stellar halo, which resolve its stellar populations and reveal a spectacular radial shell feature, oriented ∼30° relative to the major axis and along the rotation axis of the outer gas disk. The shell is ∼45 kpc southeast of M64, while a similar but more diffuse plume to the northwest extends to >100 kpc. We estimate a stellar mass and metallicity for the southern shell of
It is not yet settled how the combination of secular processes and merging gives rise to the bulges and pseudobulges of galaxies. The nearby (
- Award ID(s):
- 2007065
- PAR ID:
- 10406920
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 947
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 21
- Size(s):
- Article No. 21
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract M ⋆= 1.80 ± 0.54 × 108M ⊙and [M/H] = −1.0, respectively, and a similar mass of 1.42 ± 0.71 × 108M ⊙for the northern plume. Taking into account the accreted material in M64's inner disk, we estimate a total stellar mass for the progenitor satellite ofM ⋆,prog≃ 5 × 108M ⊙. These results suggest that M64 is in the final stages of a minor merger with a gas-rich satellite strikingly similar to the SMC, in which M64's accreted counter-rotating gas originated, and which is responsible for the formation of its dusty inner star-forming disk. -
Abstract The majority of massive star-forming galaxies at
z ∼ 2 have velocity gradients suggestive of rotation, in addition to large amounts of disordered motions. In this paper, we demonstrate that it is challenging to distinguish the regular rotation of a disk galaxy from the orbital motions of merging galaxies with seeing-limited data. However, the merger fractions atz ∼ 2 are likely too low for this to have a large effect on measurements of disk fractions. To determine how often mergers pass for disks, we look to galaxy formation simulations. We analyze ∼24,000 synthetic images and kinematic maps of 31 high-resolution simulations of isolated galaxies and mergers atz ∼ 2. We determine if the synthetic observations pass the criteria commonly used to identify disk galaxies and whether the results are consistent with their intrinsic dynamical states. Galaxies that are intrinsically mergers pass the disk criteria for anywhere from 0% to 100% of sightlines. The exact percentage depends strongly on the specific disk criteria adopted and weakly on the separation of the merging galaxies. Therefore, one cannot tell with certainty whether observations of an individual galaxy indicate a merger or a disk. To estimate the fraction of mergers passing as disks in current kinematics samples, we combine the probability that a merger will pass as a disk with theoretical merger fractions from a cosmological simulation. Taking the latter at face value, the observed disk fractions are overestimated by small amounts: at most by 5% at high stellar mass (1010–11M ⊙) and 15% at low stellar mass (109–10M ⊙). -
Abstract We present the primary results from the Dragonfly Edge-on Galaxies Survey, an exploration of the stellar halos of twelve nearby (
d < 25 Mpc) edge-on disk galaxies with the Dragonfly Telephoto Array. The edge-on orientation of these galaxies allows their stellar halos to be explored with minimal obscuration by or confusion with the much brighter disk light. Galaxies in the sample span a range of stellar masses from 109.68to 1010.88M ⊙. We confirm that the wide range of stellar halo mass fractions previously seen for Milky Way–mass galaxies is also found among less massive spiral galaxies. The scatter in stellar halo mass fraction is large, but we do find a significant positive correlation between stellar halo mass fraction and total stellar mass when the former is measured beyond five half-mass radii. Reasonably good agreement is found with predictions from cosmological hydrodynamical simulations, although observed stellar halo fractions appear to be somewhat lower than expected from these simulations. -
Abstract Mergers of and interactions between galaxies imprint a wide diversity of morphological, dynamical, and chemical characteristics in stellar halos and tidal streams. Measuring these characteristics elucidates aspects of the progenitors of the galaxies we observe today. The M81 group is the perfect galaxy group to understand the past, present, and future of a group of galaxies in the process of merging. Here, we measure the end of star formation (
t 90) and metallicity ([M/H]) of the stellar halo of M82 and the eastern tidal stream of NGC 3077 to: (1) test the idea that M82 possesses a genuine stellar halo, formed before any interaction with M81; (2) determine if NGC 3077's tidal disruption is related to the star formation history in its tails; and (3) create a timeline of the assembly history of the central trio in the M81 group. We argue that M82 possesses a genuine, metal-poor ([M/H] ∼ −1.62 dex) stellar halo, formed from the merger of a small satellite galaxy roughly 6.6 Gyr ago. We also find that the stars present in NGC 3077's tails formed before tidal disruption with M81, and possess a roughly uniform metallicity as shown in S. Okamoto et al., implying that NGC 3077's progenitor had significant population gradients. Finally, we present a timeline of the central trio’s merger/interaction history. -
Abstract The shape and orientation of dark matter (DM) halos are sensitive to the microphysics of the DM particles, yet in many mass models, the symmetry axes of the Milky Way’s DM halo are often assumed to be aligned with the symmetry axes of the stellar disk. This is well motivated for the inner DM halo, but not for the outer halo. We use zoomed-in cosmological baryonic simulations from the Latte suite of FIRE-2 Milky Way–mass galaxies to explore the evolution of the DM halo’s orientation with radius and time, with or without a major merger with a Large Magellanic Cloud analog, and when varying the DM model. In three of the four cold DM halos we examine, the orientation of the halo minor axis diverges from the stellar disk vector by more than 20° beyond about 30 galactocentric kpc, reaching a maximum of 30°–90°, depending on the individual halo’s formation history. In identical simulations using a model of self-interacting DM with
σ = 1 cm2g−1, the halo remains aligned with the stellar disk out to ∼200–400 kpc. Interactions with massive satellites (M ≳ 4 × 1010M ⊙at pericenter;M ≳ 3.3 × 1010M ⊙at infall) affect the orientation of the halo significantly, aligning the halo’s major axis with the satellite galaxy from the disk to the virial radius. The relative orientation of the halo and disk beyond 30 kpc is a potential diagnostic of self-interacting DM, if the effects of massive satellites can be accounted for.