skip to main content


This content will become publicly available on October 1, 2025

Title: First resolved stellar halo kinematics of a Milky Way-mass galaxy outside the Local Group: The flat counter-rotating halo in NGC 4945

The stellar halos of galaxies, primarily formed through the accretion and merger of smaller objects, are an important tool for understanding the hierarchical mass assembly of galaxies. However, the inner regions of stellar halos in disk galaxies are predicted to have an in situ component that is expected to be prominent along the major axis. Kinematic information is crucial to disentangle the contribution of the in situ component from the accreted stellar halos. The low surface brightness of stellar halos makes it inaccessible with traditional integrated light spectroscopy. In this work, we used a novel technique to study the kinematics of the stellar halo of the edge-on galaxy NGC 4945. We couple new deep Multi Unit Spectroscopic Explorer spectroscopic observations with existingHubbleSpace Telescope imaging data to spectroscopically measure the line-of-sight (LOS) heliocentric velocity and velocity dispersion in two fields at a galactocentric distance of 12.2 kpc (outer disk field) and 34.6 kpc (stellar halo field) along the NGC 4945 major axis, by stacking individual spectra of red giant branch and asymptotic giant branch stars. We obtained a LOS velocity and dispersion of 673 ± 11 km s−1and 73 ± 14 km s−1, respectively, for the outer disk field. This is consistent with the mean HI velocity of the disk at that distance. For the halo field, we obtained a LOS velocity and dispersion of 519 ± 12 km s−1and 42 ± 22 km s−1. The halo fields’ velocity measurement is within ∼40 km s−1from the systemic LOS velocity of NGC 4945, which is 563 km s−1, suggesting that its stellar halo at 34.6 kpc along the major axis is counter-rotating and its origins are likely to be the result of accretion. This provides the first-ever kinematic measurement of the stellar halo of a Milky Way-mass galaxy outside the Local Group from its resolved stellar population. Thus, we have established a powerful technique for measuring the velocity field for the stellar halos of nearby galaxies.

 
more » « less
Award ID(s):
2007065
PAR ID:
10554236
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
EDP Sciences
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
690
ISSN:
0004-6361
Page Range / eLocation ID:
A115
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present initial results from a large spectroscopic survey of stars throughout M33's stellar disk. We analyze a sample of 1667 red giant branch (RGB) stars extending to projected distances of ∼11 kpc from M33's center (∼18 kpc, or ∼10 scale lengths, in the plane of the disk). The line-of-sight velocities of RGB stars show the presence of two kinematical components. One component is consistent with rotation in the plane of M33's Hidisk and has a velocity dispersion (∼19 km s−1), consistent with that observed in a comparison sample of younger stars, while the second component has a significantly higher velocity dispersion. A two-component fit to the RGB velocity distribution finds that the high-dispersion component has a velocity dispersion of59.32.5+2.6km s−1and rotates very slowly in the plane of the disk (consistent with no rotation at the <1.5σlevel), which favors interpreting it as a stellar halo rather than a thick disk population. A spatial analysis indicates that the fraction of RGB stars in the high-velocity-dispersion component decreases with increasing radius over the range covered by the spectroscopic sample. Our spectroscopic sample establishes that a significant high-velocity-dispersion component is present in M33's RGB population from near M33's center to at least the radius where M33's Hidisk begins to warp at 30′ (∼7.5 kpc) in the plane of the disk. This is the first detection and spatial characterization of a kinematically hot stellar component throughout M33's inner regions.

     
    more » « less
  2. Abstract

    Stellar kinematics and metallicity are key to exploring formation scenarios for galactic disks and halos. In this work, we characterized the relationship between kinematics and photometric metallicity along the line of sight to M31's disk. We combined optical Hubble Space Telescope/Advanced Camera for Surveys photometry, from the Panchromatic Hubble Andromeda Treasury survey, with Keck/DEIMOS spectra, from the Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo survey. The resulting sample of 3512 individual red giant branch stars spans 4–19 projected kpc, making it a useful probe of both the disk and inner halo. We separated these stars into disk and halo populations, by modeling the line-of-sight velocity distributions as a function of position across the disk region, where ∼73% stars have a high likelihood of belonging to the disk and ∼14% to the halo. Although stellar halos are typically thought to be metal-poor, the kinematically identified halo contains a significant population of stars (∼29%) with disk-like metallicity ([Fe/H]phot∼ −0.10). This metal-rich halo population lags the gaseous disk to a similar extent as the rest of the halo, indicating that it does not correspond to a canonical thick disk. Its properties are inconsistent with those of tidal debris originating from the Giant Stellar Stream merger event. Moreover, the halo is chemically distinct from the phase-mixed component previously identified along the minor axis (i.e., away from the disk), implying contributions from different formation channels. These metal-rich halo stars provide direct chemodynamical evidence in favor of the previously suggested “kicked-up” disk population in M31's inner stellar halo.

     
    more » « less
  3. Abstract

    The dwarf galaxy Triangulum (M33) presents an interesting testbed for studying stellar halo formation: it is sufficiently massive so as to have likely accreted smaller satellites, but also lies within the regime where feedback and other “in situ” formation mechanisms are expected to play a role. In this work, we analyze the line-of-sight kinematics of stars across M33 from the TREX survey, with a view to understanding the origin of its halo. We split our sample into two broad populations of varying age, comprising 2032 “old” red giant branch stars and 671 “intermediate-age” asymptotic giant branch and carbon stars. We find decisive evidence for two distinct kinematic components in both the old and intermediate-age populations: a low-dispersion (∼22 km s−1) disk-like component corotating with M33's Higas and a significantly higher-dispersion component (∼50–60 km s−1) that does not rotate in the same plane as the gas and is thus interpreted as M33's stellar halo. While kinematically similar, the fraction of stars associated with the halo component differs significantly between the two populations: this is consistently ∼10% for the intermediate-age population, but decreases from ∼34% to ∼10% as a function of radius for the old population. We additionally find evidence that the intermediate-age halo population is systematically offset from the systemic velocity of M33 by ∼25 km s−1, with a preferred central LOS velocity of ∼ − 155 km s−1. This is the first detection and characterization of an intermediate-age halo in M33, and suggests in situ formation mechanisms, as well as potentially tidal interactions, have helped shaped it.

     
    more » « less
  4. Abstract

    It is not yet settled how the combination of secular processes and merging gives rise to the bulges and pseudobulges of galaxies. The nearby (D∼ 4.2 Mpc) disk galaxy M94 (NGC 4736) has the largest pseudobulge in the local universe, and offers a unique opportunity for investigating the role of merging in the formation of its pseudobulge. We present a first ever look at M94's stellar halo, which we expect to contain a fossil record of M94's past mergers. Using Subaru's Hyper Suprime-Cam, we resolve and identify red giant branch (RGB) stars in M94's halo, finding two distinct populations. After correcting for completeness through artificial star tests, we can measure the radial profile of each RGB population. The metal-rich RGB stars show an unbroken exponential profile to a radius of 30 kpc that is a clear continuation of M94's outer disk. M94's metal-poor stellar halo is detectable over a wider area and clearly separates from its metal-rich disk. By integrating the halo density profile, we infer a total accreted stellar mass of ∼2.8 × 108M, with a median metallicity of [M/H] = −1.4. This indicates that M94's most-massive past merger was with a galaxy similar to, or less massive than, the Small Magellanic Cloud. Few nearby galaxies have had such a low-mass dominant merger; therefore we suggest that M94's pseudobulge was not significantly impacted by merging.

     
    more » « less
  5. Abstract

    The shape and orientation of dark matter (DM) halos are sensitive to the microphysics of the DM particles, yet in many mass models, the symmetry axes of the Milky Way’s DM halo are often assumed to be aligned with the symmetry axes of the stellar disk. This is well motivated for the inner DM halo, but not for the outer halo. We use zoomed-in cosmological baryonic simulations from the Latte suite of FIRE-2 Milky Way–mass galaxies to explore the evolution of the DM halo’s orientation with radius and time, with or without a major merger with a Large Magellanic Cloud analog, and when varying the DM model. In three of the four cold DM halos we examine, the orientation of the halo minor axis diverges from the stellar disk vector by more than 20° beyond about 30 galactocentric kpc, reaching a maximum of 30°–90°, depending on the individual halo’s formation history. In identical simulations using a model of self-interacting DM withσ= 1 cm2g−1, the halo remains aligned with the stellar disk out to ∼200–400 kpc. Interactions with massive satellites (M≳ 4 × 1010Mat pericenter;M≳ 3.3 × 1010Mat infall) affect the orientation of the halo significantly, aligning the halo’s major axis with the satellite galaxy from the disk to the virial radius. The relative orientation of the halo and disk beyond 30 kpc is a potential diagnostic of self-interacting DM, if the effects of massive satellites can be accounted for.

     
    more » « less