Abstract In this paper, we give formulas that allow one to move between transfer function type realizations of multi-variate Schur, Herglotz, and Pick functions, without adding additional singularities except perhaps poles coming from the conformal transformation itself. In the two-variable commutative case, we use a canonical de Branges–Rovnyak model theory to obtain concrete realizations that analytically continue through the boundary for inner functions that are rational in one of the variables (so-called quasi-rational functions). We then establish a positive solution to McCarthy’s Champagne conjecture for local to global matrix monotonicity in the settings of both two-variable quasi-rational functions and $$d$$-variable perspective functions.
more »
« less
Hilbert’s 17th problem in free skew fields
Abstract This paper solves the rational noncommutative analogue of Hilbert’s 17th problem: if a noncommutative rational function is positive semidefinite on all tuples of Hermitian matrices in its domain, then it is a sum of Hermitian squares of noncommutative rational functions. This result is a generalisation and culmination of earlier positivity certificates for noncommutative polynomials or rational functions without Hermitian singularities. More generally, a rational Positivstellensatz for free spectrahedra is given: a noncommutative rational function is positive semidefinite or undefined at every matricial solution of a linear matrix inequality $$L\succeq 0$$ if and only if it belongs to the rational quadratic module generated by L . The essential intermediate step toward this Positivstellensatz for functions with singularities is an extension theorem for invertible evaluations of linear matrix pencils.
more »
« less
- Award ID(s):
- 1954709
- PAR ID:
- 10406946
- Date Published:
- Journal Name:
- Forum of Mathematics, Sigma
- Volume:
- 9
- ISSN:
- 2050-5094
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We characterize the noncommutative Aleksandrov–Clark measures and the minimal realization formulas of contractive and, in particular, isometric noncommutative rational multipliers of the Fock space. Here, the full Fock space over $$\mathbb {C} ^d$$ is defined as the Hilbert space of square-summable power series in several noncommuting (NC) formal variables, and we interpret this space as the noncommutative and multivariable analogue of the Hardy space of square-summable Taylor series in the complex unit disk. We further obtain analogues of several classical results in Aleksandrov–Clark measure theory for noncommutative and contractive rational multipliers. Noncommutative measures are defined as positive linear functionals on a certain self-adjoint subspace of the Cuntz–Toeplitz algebra, the unital $C^*$ -algebra generated by the left creation operators on the full Fock space. Our results demonstrate that there is a fundamental relationship between NC Hardy space theory, representation theory of the Cuntz–Toeplitz and Cuntz algebras, and the emerging field of noncommutative rational functions.more » « less
-
null (Ed.)We study fast algorithms for computing basic properties of an n x n positive semidefinite kernel matrix K corresponding to n points x_1,...,x_n in R^d. In particular, we consider the estimating the sum of kernel matrix entries, along with its top eigenvalue and eigenvector. These are some of the most basic problems defined over kernel matrices. We show that the sum of matrix entries can be estimated up to a multiplicative factor of 1+epsilon in time sublinear in n and linear in d for many popular kernel functions, including the Gaussian, exponential, and rational quadratic kernels. For these kernels, we also show that the top eigenvalue (and a witnessing approximate eigenvector) can be approximated to a multiplicative factor of 1+epsilon in time sub-quadratic in n and linear in d. Our algorithms represent significant advances in the best known runtimes for these problems. They leverage the positive definiteness of the kernel matrix, along with a recent line of work on efficient kernel density estimation.more » « less
-
We consider semidefinite programs (SDPs) with equality constraints. The variable to be optimized is a positive semidefinite matrix X of size n. Following the Burer‐Monteiro approach, we optimize a factor Y of size n × p instead, such that X = YYT. This ensures positive semidefiniteness at no cost and can reduce the dimension of the problem if p is small, but results in a nonconvex optimization problem with a quadratic cost function and quadratic equality constraints in Y. In this paper, we show that if the set of constraints on Y regularly defines a smooth manifold, then, despite nonconvexity, first‐ and second‐order necessary optimality conditions are also sufficient, provided p is large enough. For smaller values of p, we show a similar result holds for almost all (linear) cost functions. Under those conditions, a global optimum Y maps to a global optimum X = YYT of the SDP. We deduce old and new consequences for SDP relaxations of the generalized eigenvector problem, the trust‐region subproblem, and quadratic optimization over several spheres, as well as for the Max‐Cut and Orthogonal‐Cut SDPs, which are common relaxations in stochastic block modeling and synchronization of rotations. © 2018 Wiley Periodicals, Inc.more » « less
-
A realization is a triple, (A,b,c), consisting of a d−tuple, A=(A1,⋯,Ad), d∈N, of bounded linear operators on a separable, complex Hilbert space, H, and vectors b,c∈H. Any such realization defines an analytic non-commutative (NC) function in an open neighbourhood of the origin, 0:=(0,⋯,0), of the NC universe of d−tuples of square matrices of any fixed size. For example, a univariate realization, i.e., where A is a single bounded linear operator, defines a holomorphic function of a single complex variable, z, in an open neighbourhood of the origin via the realization formula b∗(I−zA)−1c . It is well known that an NC function has a finite-dimensional realization if and only if it is a non-commutative rational function that is defined at 0 . Such finite realizations contain valuable information about the NC rational functions they generate. By extending to infinite-dimensional realizations, we construct, study and characterize more general classes of analytic NC functions. In particular, we show that an NC function is (uniformly) entire if and only if it has a jointly compact and quasinilpotent realization. Restricting our results to one variable shows that a formal Taylor series extends globally to an entire or meromorphic function in the complex plane, C, if and only if it has a realization whose component operator is compact and quasinilpotent, or compact, respectively. This motivates our definition of the field of global (uniformly) meromorphic NC functions as the field of fractions generated by NC rational expressions in the ring of NC functions with jointly compact realizations. This definition recovers the field of meromorphic functions in C when restricted to one variable.more » « less
An official website of the United States government

