skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analytic Continuation of Concrete Realizations and the McCarthy Champagne Conjecture
Abstract In this paper, we give formulas that allow one to move between transfer function type realizations of multi-variate Schur, Herglotz, and Pick functions, without adding additional singularities except perhaps poles coming from the conformal transformation itself. In the two-variable commutative case, we use a canonical de Branges–Rovnyak model theory to obtain concrete realizations that analytically continue through the boundary for inner functions that are rational in one of the variables (so-called quasi-rational functions). We then establish a positive solution to McCarthy’s Champagne conjecture for local to global matrix monotonicity in the settings of both two-variable quasi-rational functions and $$d$$-variable perspective functions.  more » « less
Award ID(s):
2000088
PAR ID:
10416216
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2023
Issue:
9
ISSN:
1073-7928
Page Range / eLocation ID:
7845 to 7882
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A realization is a triple, (A,b,c), consisting of a d−tuple, A=(A1,⋯,Ad), d∈N, of bounded linear operators on a separable, complex Hilbert space, H, and vectors b,c∈H. Any such realization defines an analytic non-commutative (NC) function in an open neighbourhood of the origin, 0:=(0,⋯,0), of the NC universe of d−tuples of square matrices of any fixed size. For example, a univariate realization, i.e., where A is a single bounded linear operator, defines a holomorphic function of a single complex variable, z, in an open neighbourhood of the origin via the realization formula b∗(I−zA)−1c . It is well known that an NC function has a finite-dimensional realization if and only if it is a non-commutative rational function that is defined at 0 . Such finite realizations contain valuable information about the NC rational functions they generate. By extending to infinite-dimensional realizations, we construct, study and characterize more general classes of analytic NC functions. In particular, we show that an NC function is (uniformly) entire if and only if it has a jointly compact and quasinilpotent realization. Restricting our results to one variable shows that a formal Taylor series extends globally to an entire or meromorphic function in the complex plane, C, if and only if it has a realization whose component operator is compact and quasinilpotent, or compact, respectively. This motivates our definition of the field of global (uniformly) meromorphic NC functions as the field of fractions generated by NC rational expressions in the ring of NC functions with jointly compact realizations. This definition recovers the field of meromorphic functions in C when restricted to one variable. 
    more » « less
  2. We collect from several sources some of the most important results on the forward and backward limits of points under real and complex rational functions, and in particular real and complex Newton maps, in one variable and we provide numerical evidence that the dynamics of Newton maps [Formula: see text] associated to real polynomial maps [Formula: see text] with no complex roots has a complexity comparable with that of complex Newton maps in one variable. In particular such a map [Formula: see text] has no wandering domain, almost every point under [Formula: see text] is asymptotic to a fixed point and there is some non-empty open set of points whose [Formula: see text]-limit equals the set of non-regular points of the Julia set of [Formula: see text]. The first two points were proved by B. Barna in the real one-dimensional case. 
    more » « less
  3. We consider Hilbert-type functions associated with finitely generated inversive difference field extensions and systems of algebraic difference equations in the case when the translations are assigned positive integer weights. We prove that such functions are quasi-polynomials that can be represented as alternating sums of Ehrhart quasi-polynomials of rational conic polytopes. In particular, we generalize the author's results on difference dimension polynomials and their invariants to the case of inversive difference fields with weighted basic automorphisms. 
    more » « less
  4. Trefftz methods are high-order Galerkin schemes in which all discrete functions are elementwise solution of the PDE to be approximated. They are viable only when the PDE is linear and its coefficients are piecewise-constant. We introduce a “quasi-Trefftz” discontinuous Galerkin (DG) method for the discretisation of the acoustic wave equation with piecewise-smooth material parameters: the discrete functions are elementwise approximate PDE solutions. We show that the new discretisation enjoys the same excellent approximation properties as the classical Trefftz one, and prove stability and high-order convergence of the DG scheme. We introduce polynomial basis functions for the new discrete spaces and describe a simple algorithm to compute them. The technique we propose is inspired by the generalised plane waves previously developed for time-harmonic problems with variable coefficients; it turns out that in the case of the time-domain wave equation under consideration the quasi-Trefftz approach allows for polynomial basis functions. 
    more » « less
  5. null (Ed.)
    The notion of a shuffle-rational formal power series is introduced. Then two equivalent characterizations are presented, one in terms of an analogue of Schützenberger’s recognizability of a series, and the other in the context of state space realizations of nonlinear input-output systems represented by Chen-Fliess series. An underlying computational framework is also described which employs the Hopf algebra associated with the shuffle group. As an application, it is shown how to model a bilinear system with output saturation in this context. 
    more » « less