Many parasite species use multiple host species to complete development; however, empirical tests of models that seek to understand factors impacting evolutionary changes or maintenance of host number in parasite life cycles are scarce. Specifically, Brown et al.’s (2001) mating system model, which posits multi-host life cycles are an adaptation to prevent inbreeding in hermaphroditic parasites and thus, preclude inbreeding depression, remains untested. The model assumes loss of a host results in parasite inbreeding and predicts host loss can only evolve if there is no parasite inbreeding depression. We provide the first empirical tests of this model using a novel approach we developed for assessing inbreeding depression from field-collected, parasite samples. The method compares genetically-based, selfing-rate estimates to a demographic-based selfing rate, which was derived from the closed mating system experienced by endoparasites. Results from the hermaphroditic trematode Alloglossidium renale, which has a derived 2-host life cycle, supported both the assumption and prediction of the mating system model as this highly inbred species had no indication of inbreeding depression. Additionally, comparisons of genetic and demographic selfing rates revealed a mixed mating system that could be explained completely by the parasite’s demography, i.e., its infection intensities.
more »
« less
Socially cued anticipatory plasticity predicts male primary mating tactic but not mating behaviour rates
- Award ID(s):
- 1740466
- PAR ID:
- 10406958
- Date Published:
- Journal Name:
- Animal Behaviour
- Volume:
- 196
- Issue:
- C
- ISSN:
- 0003-3472
- Page Range / eLocation ID:
- 43 to 53
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Many traits are subject to assortative mating, with recent molecular genetic findings confirming longstanding theoretical predictions that assortative mating induces long range dependence across causal variants. However, all marker-based heritability estimators implicitly assume mating is random. We provide mathematical and simulation-based evidence demonstrating that both method-of-moments and likelihood-based estimators are biased in the presence of assortative mating and derive corrected heritability estimators for traits subject to assortment. Finally, we demonstrate that the empirical patterns of estimates across methods and sample sizes for real traits subject to assortative mating are congruent with expected assortative mating-induced biases. For example, marker-based heritability estimates for height are 14% – 23% higher than corrected estimates using UK Biobank data.more » « less
An official website of the United States government

