Upon the secondary contact of populations, speciation with gene flow is greatly facilitated when the same pleiotropic loci are both subject to divergent ecological selection and induce non-random mating, leading to loci with this fortuitous combination of functions being referred to as ‘magic trait’ loci. We use a population genetics model to examine whether ‘pseudomagic trait’ complexes, composed of physically linked loci fulfilling these two functions, are as efficient in promoting premating isolation as magic traits. We specifically measure the evolution of choosiness, which controls the strength of assortative mating. We show that, surprisingly, pseudomagic trait complexes, and to a lesser extent also physically unlinked loci, can lead to the evolution of considerably stronger assortative mating preferences than do magic traits, provided polymorphism at the involved loci is maintained. This is because assortative mating preferences are generally favoured when there is a risk of producing maladapted recombinants, as occurs with non-magic trait complexes but not with magic traits (since pleiotropy precludes recombination). Contrary to current belief, magic traits may not be the most effective genetic architecture for promoting strong premating isolation. Therefore, distinguishing between magic traits and pseudomagic trait complexes is important when inferring their role in premating isolation. This calls for further fine-scale genomic research on speciation genes.
more »
« less
Assortative mating biases marker-based heritability estimators
Abstract Many traits are subject to assortative mating, with recent molecular genetic findings confirming longstanding theoretical predictions that assortative mating induces long range dependence across causal variants. However, all marker-based heritability estimators implicitly assume mating is random. We provide mathematical and simulation-based evidence demonstrating that both method-of-moments and likelihood-based estimators are biased in the presence of assortative mating and derive corrected heritability estimators for traits subject to assortment. Finally, we demonstrate that the empirical patterns of estimates across methods and sample sizes for real traits subject to assortative mating are congruent with expected assortative mating-induced biases. For example, marker-based heritability estimates for height are 14% – 23% higher than corrected estimates using UK Biobank data.
more »
« less
- Award ID(s):
- 1810500
- PAR ID:
- 10337302
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract When gene flow accompanies speciation, recombination can decouple divergently selected loci and loci conferring reproductive isolation. This barrier to sympatric divergence disappears when assortative mating and disruptive selection involve the same “magic” trait. Although magic traits could be widespread, the relative importance of different types of magic traits to speciation remains unclear. Because body size frequently contributes to host adaptation and assortative mating in plant-feeding insects, we evaluated several magic trait predictions for this trait in a pair of sympatric Neodiprion sawfly species adapted to different pine hosts. A large morphological dataset revealed that sawfly adults from populations and species that use thicker-needled pines are consistently larger than those that use thinner-needled pines. Fitness data from recombinant backcross females revealed that egg size is under divergent selection between the preferred pines. Lastly, mating assays revealed strong size-assortative mating within and between species in three different crosses, with the strongest prezygotic isolation between populations that have the greatest interspecific size differences. Together, our data support body size as a magic trait in pine sawflies and possibly many other plant-feeding insects. Our work also demonstrates how intraspecific variation in morphology and ecology can cause geographic variation in the strength of prezygotic isolation.more » « less
-
Hybridization and subsequent genetic introgression are now known to be common features of the histories of many species, including our own. Following hybridization, selection often purges introgressed DNA genome-wide. While assortative mating can limit hybridization in the first place, it is also known to play an important role in postzygotic selection against hybrids and, thus, the purging of introgressed DNA. However, this role is usually thought of as a direct one: a tendency for mates to be conspecific reduces the sexual fitness of hybrids, reducing the transmission of introgressed ancestry. Here, we explore a second, indirect role of assortative mating as a postzygotic barrier to gene flow. Under assortative mating, parents covary in their ancestry, causing ancestry to be “bundled” in their offspring and later generations. This bundling effect increases ancestry variance in the population, enhancing the efficiency with which postzygotic selection purges introgressed DNA. Using whole-genome simulations, we show that the bundling effect can comprise a substantial portion of mate choice’s overall effect as a postzygotic barrier to gene flow. We then derive a simple method for estimating the impact of the bundling effect from standard metrics of assortative mating. Applying this method to data from a diverse set of hybrid zones, we find that the bundling effect increases the purging of introgressed DNA by between 1.2-fold (in a baboon system with weak assortative mating) and 14-fold (in a swordtail system with strong assortative mating). Thus, assortative mating’s bundling effect contributes substantially to the genetic isolation of species.more » « less
-
Abstract ObjectivesLinear enamel hypoplasia (LEH) is a common skeletal marker of physiological stress (e.g., malnutrition or illness) that is studied within and across populations, without reference to familial risk. We examine LEH prevalence in a population with known genealogical relationships to determine the potential influence of genetic heritability and shared environment. MethodsLEH data of 239 individuals from a single population were recorded from the Ohio State University Menegaz‐Bock collection dental casts. All individuals were of known age, sex, and genealogy. Narrow‐sense heritability estimates were obtained for LEH presence and count data from all unworn, fully erupted teeth (excluding third molars) using SOLAR (v.8.1.1). Age, sex, and age–sex interaction were included as covariates. Models were re‐run with a household effect variable. ResultsLEH persists across generations in this study population with moderate, significant heritability estimates for presence in four teeth, and count in four teeth (three teeth were significant for both). When a household effect variable was added, no residual heritability remained for LEH count on any tooth. There was no significant household effect for three of the four teeth that had significant heritability estimates for LEH presence. Age was a significant covariate. Further analyses with birth year data revealed a secular trend toward less LEH. ConclusionsThis study provides evidence for familial risk of LEH (genetic and environmental) that has consequences for the broad use of this skeletal marker of stress. These results have repercussions for archaeological assemblages, or population health studies, where genetic relatives and household groups might be heavily represented.more » « less
An official website of the United States government

