Sensing and communication technology has been used successfully in various event monitoring applications over the last two decades, especially in places where long-term manual monitoring is infeasible. However, the major applicability of this technology was mostly limited to terrestrial environments. On the other hand, underwater wireless sensor networks (UWSNs) opens a new space for the remote monitoring of underwater species and faunas, along with communicating with underwater vehicles, submarines, and so on. However, as opposed to terrestrial radio communication, underwater environment brings new challenges for reliable communication due to the high conductivity of the aqueous medium which leads to major signal absorption. In this paper, we provide a detailed technical overview of different underwater communication technologies, namely acoustic, magnetic, and visual light, along with their potentials and challenges in submarine environments. Detailed comparison among these technologies have also been laid out along with their pros and cons using real experimental results.
more »
« less
Taking Wireless Underground: A Comprehensive Summary
The tremendous potentials of sensing and communication technologies have been explored and implemented for different remote event monitoring applications over the last two decades. However, the applicability of sensing and communication technologies are not necessarily limited to above-ground environments, but also implementable and applicable for subterranean, underground scenarios. However, as opposed to air medium, underground communication medium is very harsh due to the presence of heterogeneous underground materials along with underground aqueous components. In this paper, we provide a technical overview of different underground wireless communication technologies, namely radio, acoustic, magnetic and visible light, along with their potentials and challenges for several underground applications. We also lay out a detailed comparison among these technologies along with their pros and cons using detailed experimental results.
more »
« less
- Award ID(s):
- 1947748
- PAR ID:
- 10407044
- Date Published:
- Journal Name:
- ACM Transactions on Sensor Networks
- ISSN:
- 1550-4859
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Passive Remote Sensing services are indispensable in modern society because of the applications related to climate studies and earth science. Among those, NASA’s Soil Moisture Active and Passive (SMAP) mission provides an essential climate variable such as the moisture content of the soil by using microwave radiation within protected band over 1400-1427 MHz. However, because of the increasing active wireless technologies such as Internet of Things (IoT), unmanned aerial vehicles (UAV), and 5G wireless communication, the SMAP’s passive observations are expected to experience an increasing number of Radio Frequency Interference (RFI). RFI is a well-documented issue and SMAP has a ground processing unit dedicated to tackling this issue. However, advanced techniques are needed to tackle the increasing RFI problem for passive sensing systems and to jointly coexist communication and sensing systems. In this paper, we apply a deep learning approach where a novel Convolutional Neural Network (CNN) architecture for both RFI detection and mitigation is employed. SMAP Level 1A spectrogram of antenna counts and various moments data are used as the inputs to the deep learning architecture. We simulate different types of RFI sources such as pulsed, CW or wideband anthropogenic signals. We then use artificially corrupted SMAP Level 1B antenna measurements in conjunction with RFI labels to train the learning architecture. While the learned detection network classifies input spectrograms as RFI or no-RFI cases, the mitigation network reconstructs the RFI mitigated antenna temperature images. The proposed learning framework both takes advantage of the existing SMAP data and the simulated RFI scenarios. Future remote sensing systems such as radiometers will suffer an increasing RFI problem and spectrum sharing and techniques that will allow coexistance of sensing and communication systems will be utmost importance for both parties. RFI detection and mitigation will remain a prerequisite for these radiometers and the proposed deep learning approach has the potential to provide an additional perspective to existing solutions. We will present detailed analysis on the selected deep learning architecture, obtained RFI detection accuracy levels and RFI mitigation performance.more » « less
-
Water resource has become one of the most precious resources in recent decades. Agriculture accounts for about 80\% of the total water usage in US. There is a demanding need for efficient irrigation and water management systems built for sustainable water utilization in smart agriculture. Real time in-situ soil moisture sensing is a vital part for smart agriculture. Traditional electromagnetic (EM) based soil moisture sensing relies on EM based wireless sensor or ground penetrating radar (GPR) system. Based on the receiving signal strength and delay, tomographic techniques are used to derive the dielectric parameters of the soil, which are then into soil moisture distribution using empirical model. However, the EM signal attenuate sharply during underground propagation because of high operating frequency and lossy medium. In order to counter the disadvantage for underground sensing, we propose a Magnetic Induction (MI) based large range soil moisture sensing scheme in inhomogeneous environments. Here, we present the topology of the sensing system and analyze the channel model. The sensing process is based on transformed model, the conductivity and permittivity distribution are derived using SIRT algorithm. Through COMSOL simulation and analytical results, our proposed soil moisture sensing method achieves a root mean square error (RMSE) of 0.06 m^3/m^3 in 40 m 2D scale inhomogeneous environment range.more » « less
-
Long-range Wide-area Network (LoRaWAN) is an innovative and prominent communication protocol in the domain of Low-power Wide-area Networks (LPWAN), known for its ability to provide long-range communication with low energy consumption. However, the practical implementation of the LoRaWAN protocol, operating at the Medium Access Control layer and specially built to work upon the LoRa physical layer, presents numerous research challenges, including network congestion, interference, optimal resource allocation, collisions, scalability, and security. To mitigate these challenges effectively, the adoption of cutting-edge data-driven technologies such as Deep Learning (DL) and Machine Learning (ML) emerges as a promising approach. Interestingly, very few existing surveys or tutorials have addressed the importance of ML- or DL-based techniques for LoRaWAN. This article provides a comprehensive survey of current LoRaWAN challenges and recent solutions, particularly using DL and ML algorithms. The primary objective of this survey is to stimulate further research efforts to enhance the performance of LoRa networks and facilitate their practical deployments. We begin by emphasizing the characteristics of LoRaWAN compared to other LPWAN technologies and then examine the technical specifications of LoRaWAN that have been released so far, as well as the current research trends. Furthermore, we discuss an overview of the most utilized DL and ML algorithms for overcoming LoRaWAN challenges. We also present an interoperable reference architecture for LoRaWAN and validate its effectiveness using a wide range of applications. Additionally, we shed light on several evolving challenges of LoRa and LoRaWAN for the future digital network, along with possible solutions. Finally, we conclude our discussion by briefly summarizing our work.more » « less
-
Multi-modal bio-sensing has recently been used as effective research tools in affective computing, autism, clinical disorders, and virtual reality among other areas. However, none of the existing bio-sensing systems support multi-modality in a wearable manner outside well-controlled laboratory environments with research-grade measurements. This work attempts to bridge this gap by developing a wearable multi-modal biosensing system capable of collecting, synchronizing, recording and transmitting data from multiple bio-sensors: PPG, EEG, eye-gaze headset, body motion capture, GSR, etc. while also providing task modulation features including visual-stimulus tagging. This study describes the development and integration of the various components of our system. We evaluate the developed sensors by comparing their measurements to those obtained by a standard research-grade bio-sensors. We first evaluate different sensor modalities of our headset, namely earlobe-based PPG module with motion-noise canceling for ECG during heart-beat calculation. We also compare the steady-state visually evoked potentials (SSVEP) measured by our shielded dry EEG sensors with the potentials obtained by commercially available dry EEG sensors. We also investigate the effect of head movements on the accuracy and precision of our wearable eyegaze system. Furthermore, we carry out two practical tasks to demonstrate the applications of using multiple sensor modalities for exploring previously unanswerable questions in bio-sensing. Specifically, utilizing bio-sensing we show which strategy works best for playing Where is Waldo? visual-search game, changes in EEG corresponding to true versus false target fixations in this game, and predicting the loss/draw/win states through biosensing modalities while learning their limitations in a Rock-Paper-Scissors game.more » « less
An official website of the United States government

