skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Clinal variations in seedling traits and responses to water availability correspond to seed-source environmental gradients in a foundational dryland tree species
Abstract Background and Aims In dryland ecosystems, conifer species are threatened by more frequent and severe droughts, which can push species beyond their physiological limits. Adequate seedling establishment will be critical for future resilience to global change. We used a common garden glasshouse experiment to determine how seedling functional trait expression and plasticity varied among seed sources in response to a gradient of water availability, focusing on a foundational dryland tree species of the western USA, Pinus monophylla. We hypothesized that the expression of growth-related seedling traits would show patterns consistent with local adaptation, given clinal variation among seed source environments. Methods We collected P. monophylla seeds from 23 sites distributed across rangewide gradients of aridity and seasonal moisture availability. A total of 3320 seedlings were propagated with four watering treatments representing progressively decreasing water availability. Above- and below-ground growth-related traits of first-year seedlings were measured. Trait values and trait plasticity, here representing the degree of variation among watering treatments, were modelled as a function of watering treatment and environmental conditions at the seed source locations (i.e. water availability, precipitation seasonality). Key Results We found that, under all treatments, seedlings from more arid climates had larger above- and below-ground biomass compared to seedlings from sites experiencing lower growing-season water limitation, even after accounting for differences in seed size. Additionally, trait plasticity in response to watering treatments was greatest for seedlings from summer-wet sites that experience periodic monsoonal rain events. Conclusions Our results show that P. monophylla seedlings respond to drought through plasticity in multiple traits, but variation in trait responses suggests that different populations are likely to respond uniquely to changes in local climate. Such trait diversity will probably influence the potential for future seedling recruitment in woodlands that are projected to experience extensive drought-related tree mortality.  more » « less
Award ID(s):
2145757
PAR ID:
10407131
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Annals of Botany
ISSN:
0305-7364
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the mechanisms that promote the coexistence of hundreds of species over small areas in tropical forest remains a challenge. Many tropical tree species are presumed to be functionally equivalent shade-tolerant species that differ in performance trade-offs between survival in shade and the ability to quickly grow in sunlight. Variation in plant functional traits related to resource acquisition is thought to predict variation in performance among species, perhaps explaining community assembly across habitats with gradients in resource availability. Many studies have found low predictive power, however, when linking trait measurements to species demographic rates. Seedlings face different challenges recruiting on the forest floor and may exhibit different traits and/or performance trade-offs than older individuals face in the eventual adult niche. Seed mass is the typical proxy for seedling success, but species also differ in cotyledon strategy (reserve vs photosynthetic) or other seedling traits. These can cause species with the same average seed mass to have divergent performance in the same habitat. We combined long-term studies of seedling dynamics with functional trait data collected at a standard developmental stage in three diverse neotropical forests to ask whether variation in coordinated suites of traits predicts variation among species in demographic performance. Across hundreds of species in Ecuador, Panama, and Puerto Rico, we found seedlings displayed correlated suites of leaf, stem, and root traits, which strongly correlated with seed mass and cotyledon strategy. Variation among species in seedling functional traits, seed mass, and cotyledon strategy were strong predictors of trade-offs in seedling growth and survival. Our findings highlight the importance of cotyledon strategy in addition to seed mass as a key component of seed and seedling biology. These results also underscore the importance of matching the ontogenetic stage of the trait measurement to the stage of demographic dynamics. Synthesis: With strikingly consistent patterns across three tropical forests, we find strong evidence for the promise of functional traits to provide mechanistic links between seedling form and demographic performance. 
    more » « less
  2. Abstract Understanding the mechanisms that promote the coexistence of hundreds of species over small areas in tropical forest remains a challenge. Many tropical tree species are presumed to be functionally equivalent shade tolerant species but exist on a continuum of performance trade‐offs between survival in shade and the ability to quickly grow in sunlight. These trade‐offs can promote coexistence by reducing fitness differences.Variation in plant functional traits related to resource acquisition is thought to predict variation in performance among species, perhaps explaining community assembly across habitats with gradients in resource availability. Many studies have found low predictive power, however, when linking trait measurements to species demographic rates.Seedlings face different challenges recruiting on the forest floor and may exhibit different traits and/or performance trade‐offs than older individuals face in the eventual adult niche. Seed mass is the typical proxy for seedling success, but species also differ in cotyledon strategy (reserve vs. photosynthetic) or other leaf, stem and root traits. These can cause species with the same average seed mass to have divergent performance in the same habitat.We combined long‐term studies of seedling dynamics with functional trait data collected at a standard life‐history stage in three diverse neotropical forests to ask whether variation in coordinated suites of traits predicts variation among species in demographic performance.Across hundreds of species in Ecuador, Panama and Puerto Rico, we found seedlings displayed correlated suites of leaf, stem, and root traits, which strongly correlated with seed mass and cotyledon strategy. Variation among species in seedling functional traits, seed mass, and cotyledon strategy were strong predictors of trade‐offs in seedling growth and survival. These results underscore the importance of matching the ontogenetic stage of the trait measurement to the stage of demographic dynamics.Our findings highlight the importance of cotyledon strategy in addition to seed mass as a key component of seed and seedling biology in tropical forests because of the contribution of carbon reserves in storage cotyledons to reducing mortality rates and explaining the growth‐survival trade‐off among species.Synthesis: With strikingly consistent patterns across three tropical forests, we find strong evidence for the promise of functional traits to provide mechanistic links between seedling form and demographic performance. 
    more » « less
  3. Assessing within-species variation in response to drought is crucial for predicting species’ responses to climate change and informing restoration and conservation efforts, yet experimental data are lacking for the vast majority of tropical tree species. We assessed intraspecific variation in response to water availability across a strong rainfall gradient for 16 tropical tree species using reciprocal transplant and common garden field experiments, along with measurements of gene flow and key functional traits linked to drought resistance. Although drought resistance varies widely among species in these forests, we found little evidence for within-species variation in drought resistance. For the majority of functional traits measured, we detected no significant intraspecific variation. The few traits that did vary significantly between drier and wetter origins of the same species all showed relationships opposite to expectations based on drought stress. Furthermore, seedlings of the same species originating from drier and wetter sites performed equally well under drought conditions in the common garden experiment and at the driest transplant site. However, contrary to expectation, wetter-origin seedlings survived better than drier-origin seedlings under wetter conditions in both the reciprocal transplant and common garden experiment, potentially due to lower insect herbivory. Our study provides the most comprehensive picture to date of intraspecific variation in tropical tree species’ responses to water availability. Our findings suggest that while drought plays an important role in shaping species composition across moist tropical forests, its influence on within-species variation is limited. 
    more » « less
  4. Medeiros, Juliana (Ed.)
    Abstract The study of plant functional traits and variation among and within species can help illuminate functional coordination and trade-offs in key processes that allow plants to grow, reproduce and survive. We studied 20 leaf, above-ground stem, below-ground stem and fine-root traits of 17 Costus species from forests in Costa Rica and Panama to answer the following questions: (i) Do congeneric species show above-ground and below-ground trait coordination and trade-offs consistent with theory of resource acquisition and conservation? (ii) Is there correlated evolution among traits? (iii) Given the diversity of habitats over which Costus occurs, what is the relative contribution of site and species to trait variation? We performed a principal components analysis (PCA) to assess for the existence of a spectrum of trait variation and found that the first two PCs accounted for 21.4 % and 17.8 % of the total trait variation, respectively, with the first axis of variation being consistent with a continuum of resource-acquisitive and resource-conservative traits in water acquisition and use, and the second axis of variation being related to the leaf economics spectrum. Stomatal conductance was negatively related to both above-ground stem and rhizome specific density, and these relationships became stronger after accounting for evolutionary relatedness, indicating correlated evolution. Despite elevation and climatic differences among sites, high trait variation was ascribed to individuals rather than to sites. We conclude that Costus species present trait coordination and trade-offs that allow species to be categorized as having a resource-acquisitive or resource-conservative functional strategy, consistent with a whole-plant functional strategy with evident coordination and trade-offs between above-ground and below-ground function. Our results also show that herbaceous species and species with rhizomes tend to agree with trade-offs found in more species-rich comparisons. 
    more » « less
  5. Abstract Microclimatic conditions change dramatically as forests age and impose strong filters on community assembly during succession. Light availability is the most limiting environmental factor in tropical wet forest succession; by contrast, water availability is predicted to strongly influence tropical dry forest (TDF) successional dynamics. While mechanisms underlying TDF successional trajectories are not well understood, observational studies have demonstrated that TDF communities transition from being dominated by species with conservative traits to species with acquisitive traits, the opposite of tropical wet forest. Determining how functional traits predict TDF tree species’ responses to changing environmental conditions could elucidate mechanisms underlying tree performance during TDF succession. We implemented a 6‐ha restoration experiment on a degraded Vertisol in Costa Rica to determine (1) how TDF tree species with different resource‐use strategies performed along a successional gradient and (2) how ecophysiological functional traits correlated with tree performance in simulated successional stages. We used two management treatments to simulate distinct successional stages including: clearing all remnant vegetation (early‐succession), or interplanting seedlings with no clearing (mid‐succession). We crossed these two management treatments (cleared/interplanted) with two species mixes with different resource‐use strategies (acquisitive/conservative) to examine their interaction. Overall seedling survival after 2 yr was low, 15.1–26.4% in the four resource‐use‐strategy × management‐treatment combinations, and did not differ between the management treatments or resource‐use‐strategy groups. However, seedling growth rates were dramatically higher for all species in the cleared treatment (year 1, 69.1% higher; year 2, 143.3% higher) and defined resource‐use strategies had some capacity to explain seedling performance. Overall, ecophysiological traits were better predictors of species’ growth and survival than resource‐use strategies defined by leaf and stem traits such as specific leaf area. Moreover, ecophysiological traits related to water use had a stronger influence on seedling performance in the cleared, early‐successional treatment, indicating that the influence of microclimatic conditions on tree survival and growth shifts predictably during TDF succession. Our findings suggest that ecophysiological traits should be explicitly considered to understand shifts in TDF functional composition during succession and that using these traits to design species mixes could greatly improve TDF restoration outcomes. 
    more » « less