skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Targeting oncogenic KRAS with molecular brush-conjugated antisense oligonucleotides
The mutant form of the guanosine triphosphatase (GTPase) KRAS is a key driver in human tumors but remains a challenging therapeutic target, making KRAS MUT cancers a highly unmet clinical need. Here, we report a class of bottlebrush polyethylene glycol (PEG)–conjugated antisense oligonucleotides (ASOs) for potent in vivo KRAS depletion. Owing to their highly branched architecture, these molecular nanoconstructs suppress nearly all side effects associated with DNA–protein interactions and substantially enhance the pharmacological properties of the ASO, such as plasma pharmacokinetics and tumor uptake. Systemic delivery to mice bearing human non–small-cell lung carcinoma xenografts results in a significant reduction in both KRAS levels and tumor growth, and the antitumor performance well exceeds that of current popular ASO paradigms, such as chemically modified oligonucleotides and PEGylation using linear or slightly branched PEG. Importantly, these conjugates relax the requirement on the ASO chemistry, allowing unmodified, natural phosphodiester ASOs to achieve efficacy comparable to that of chemically modified ones. Both the bottlebrush polymer and its ASO conjugates appear to be safe and well tolerated in mice. Together, these data indicate that the molecular brush–ASO conjugate is a promising therapeutic platform for the treatment of KRAS -driven human cancers and warrant further preclinical and clinical development.  more » « less
Award ID(s):
2004947
PAR ID:
10407145
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
29
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We have developed a non-cationic transfection vector in the form of bottlebrush polymer-antisense oligonucleotide (ASO) conjugates. Termed pacDNA (polymer-assisted compaction of DNA), these agents show improved biopharmaceutical characteristics and antisense potency in vivo while suppressing non-antisense side effects. Nonetheless, there still is a lack of the mechanistic understanding of the cellular uptake, subcellular trafficking, and gene knockdown with pacDNA. Here, we show that the pacDNA enters human non-small cell lung cancer cells (NCI-H358) predominantly by scavenger receptor-mediated endocytosis and macropinocytosis and trafficks via the endolysosomal pathway within the cell. The pacDNA significantly reduces a target gene expression (KRAS) in the protein level but not in the mRNA level, despite that the transfection of certain free ASOs causes ribonuclease H1 (RNase H)-dependent degradation of KRAS mRNA. In addition, the antisense activity of pacDNA is independent of ASO chemical modification, suggesting that the pacDNA always functions as a steric blocker. 
    more » « less
  2. Colorectal cancer (CRC) is a highly prevalent and lethal cancer worldwide. Approximately 45% of CRC patients harbor a gain-in-function mutation in KRAS. KRAS is the most frequently mutated oncogene accounting for approximately 25% of all human cancers. Gene mutations in KRAS cause constitutive activation of the KRAS protein and MAPK/AKT signaling, resulting in unregulated proliferation and survival of cancer cells and other aspects of malignant transformation, progression, and metastasis. While KRAS has long been considered undruggable, the FDA recently approved two direct acting KRAS inhibitors, Sotorasib and Adagrasib, that covalently bind and inactivate KRASG12C. Both drugs showed efficacy for patients with non-small cell lung cancer (NSCLC) diagnosed with a KRASG12Cmutation, but for reasons not well understood, were considerably less efficacious for CRC patients diagnosed with the same mutation. Thus, it is imperative to understand the basis for resistance to KRASG12Cinhibitors, which will likely be the same limitations for other mutant specific KRAS inhibitors in development. This review provides an update on clinical trials involving CRC patients treated with KRASG12Cinhibitors as a monotherapy or combined with other drugs. Mechanisms that contribute to resistance to KRASG12Cinhibitors and the development of novel RAS inhibitors with potential to escape such mechanisms of resistance are also discussed. 
    more » « less
  3. Abstract KRAS is the most frequently mutated oncogene in human lung adenocarcinomas (hLUAD), and activating mutations frequently co-occur with loss-of-function mutations in TP53 or STK11/LKB1. However, mutation of all three genes is rarely observed in hLUAD, even though engineered comutation is highly aggressive in mouse lung adenocarcinoma (mLUAD). Here, we provide a mechanistic explanation for this difference by uncovering an evolutionary divergence in the regulation of triosephosphate isomerase (TPI1). In hLUAD, TPI1 activity is regulated via phosphorylation at Ser21 by the salt inducible kinases (SIK) in an LKB1-dependent manner, modulating flux between the completion of glycolysis and production of glycerol lipids. In mice, Ser21 of TPI1 is a Cys residue that can be oxidized to alter TPI1 activity without a need for SIKs or LKB1. Our findings suggest this metabolic flexibility is critical in rapidly growing cells with KRAS and TP53 mutations, explaining why the loss of LKB1 creates a liability in these tumors. Significance:Utilizing phosphoproteomics and metabolomics in genetically engineered human cell lines and genetically engineered mouse models (GEMM), we uncover an evolutionary divergence in metabolic regulation within a clinically relevant genotype of human LUAD with therapeutic implications. Our data provide a cautionary example of the limits of GEMMs as tools to study human diseases such as cancers.This article is highlighted in the In This Issue feature, p. 799 
    more » « less
  4. 91 Background: Colorectal cancer (CRC) is the third leading type of cancer worldwide, with ~150,000 new cases in the US annually and a grim 14% 5-year survival for patients diagnosed at a late stage. A lack of treatment options leads to persistently poor prognosis for patients with advanced stage disease. KRAS mutations are well known drivers of CRC and other GI cancers. Multiple KRAS mutations occur in CRC, including G12D (34%), G12V (21%), G13D (20%), G12C (8%), and others (18%). Existing KRAS-targeted therapies have limited use in CRC, underscoring the need for pan-RAS inhibitors in treating CRC and other RAS driven cancers. Objective: Assess activity of ADT-007, our pan-RAS inhibitor, on wild-type (WT) and KRAS-mutant 3D bioprinted organoid tumor (BOT) tissue using our high-throughput ex vivo platform. Methods: Using previously established bioprinting protocols, WT and mutant BOTs were printed with HT29 and HCT116 cells, respectively. HT29 is an established human WT CRC cell line with known sensitivity to proteosome and survivin inhibitors. HCT116 is a KRASG13Dmutant human CRC cell line. 3 sets of BOTs were generated and acclimated for 24h. One set was treated for 72h with proteosome inhibitor Bortezomib, another with survivin inhibitor YM155, and the third with our novel pan-RAS inhibitor ADT-007. Dose response curves were generated from both conventional ATP luminescence readouts and high-content imaging. Results: BOT tissue microarchitecture was validated and >200 µm diffusion in BOTs was confirmed using high-content imaging. Differential response was quantified using Cell TiterGlo endpoint assay as well as advanced image processing of high-content live/dead nuclear stained images captured at multiple z-plains. ADT-007 IC50was found to be substantially lower for mutant HCT116 compared to that for WT HT29 cell line BOTs, which was consistent with separately conducted in vitro and in vivo studies. Conclusions: A pan-RAS inhibitor, such as ADT-007 with high selectivity for cancer cells with activated RAS that is not limited to a specific KRAS mutant allele or RAS isozyme, could have broader use for CRC and other RAS-driven cancers. Further, due to their potential to replicate biophysical characteristics of a tumor and its microenvironment, BOT based precision and personalized medicine platforms can provide more accurate drug efficacy readout compared to in vitro cancer models. 
    more » « less
  5. Solitary fibrous tumor (SFT) is a rare soft-tissue sarcoma. This nonhereditary cancer is the result of an environmental intrachromosomal gene fusion between NAB2 and STAT6 on chromosome 12, which fuses the activation domain of STAT6 with the repression domain of NAB2. Currently there is not an approved chemotherapy regimen for SFTs. The best response on available pharmaceuticals is a partial response or stable disease for several months. The purpose of this study is to investigate the potential of RNA-based therapies for the treatment of SFTs. Specifically, in vitro SFT cell models were engineered to harbor the characteristic NAB2–STAT6 fusion using the CRISPR/SpCas9 system. Cell migration as well as multiple cancer-related signaling pathways were increased in the engineered cells as compared to the fusion-absent parent cells. The SFT cell models were then used for evaluating the targeting efficacies of NAB2–STAT6 fusion-specific antisense oligonucleotides (ASOs) and CRISPR/CasRx systems. Our results showed that fusion specific ASO treatments caused a 58% reduction in expression of fusion transcripts and a 22% reduction in cell proliferation after 72 h in vitro. Similarly, the AAV2-mediated CRISPR/CasRx system led to a 59% reduction in fusion transcript expressions in vitro, and a 55% reduction in xenograft growth after 29 days ex vivo. 
    more » « less