skip to main content


Title: A standard siren cosmological measurement from the potential GW190521 electromagnetic counterpart ZTF19abanrhr
ABSTRACT

The identification of the electromagnetic (EM) counterpart candidate ZTF19abanrhr to the binary black hole merger GW190521 opens the possibility to infer cosmological parameters from this standard siren with a uniquely identified host galaxy. The distant merger allows for cosmological inference beyond the Hubble constant. Here, we show that the three-dimensional spatial location of ZTF19abanrhr calculated from the EM data remains consistent with the latest sky localization of GW190521 provided by the LIGO-Virgo Collaboration. If ZTF19abanrhr is associated with the GW190521 merger, and assuming a flat wCDM model, we find that $H_0=48^{+23}_{-10}\, \mathrm{km} \, \mathrm{s}^{-1}\, \mathrm{Mpc}^{-1}$, $\Omega _m=0.35^{+0.41}_{-0.26}$, and $w_0=-1.31^{+0.61}_{-0.48}$ (median and $68{{\ \rm per\ cent}}$ credible interval). If we use the Hubble constant value inferred from another gravitational-wave event, GW170817, as a prior for our analysis, together with assumption of a flat ΛCDM and the model-independent constraint on the physical matter density ωm from Planck, we find $H_0=68.9^{+8.7}_{-6.0}\, \mathrm{km} \, \mathrm{s}^{-1}\, \mathrm{Mpc}^{-1}$.

 
more » « less
NSF-PAR ID:
10407158
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
513
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2152-2157
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a measurement of the Hubble constant (H0) and other cosmological parameters from a joint analysis of six gravitationally lensed quasars with measured time delays. All lenses except the first are analyzed blindly with respect to the cosmological parameters. In a flat ΛCDM cosmology, we find $H_{0} = 73.3_{-1.8}^{+1.7}~\mathrm{km~s^{-1}~Mpc^{-1}}$, a $2.4{{\ \rm per\ cent}}$ precision measurement, in agreement with local measurements of H0 from type Ia supernovae calibrated by the distance ladder, but in 3.1σ tension with Planck observations of the cosmic microwave background (CMB). This method is completely independent of both the supernovae and CMB analyses. A combination of time-delay cosmography and the distance ladder results is in 5.3σ tension with Planck CMB determinations of H0 in flat ΛCDM. We compute Bayes factors to verify that all lenses give statistically consistent results, showing that we are not underestimating our uncertainties and are able to control our systematics. We explore extensions to flat ΛCDM using constraints from time-delay cosmography alone, as well as combinations with other cosmological probes, including CMB observations from Planck, baryon acoustic oscillations, and type Ia supernovae. Time-delay cosmography improves the precision of the other probes, demonstrating the strong complementarity. Allowing for spatial curvature does not resolve the tension with Planck. Using the distance constraints from time-delay cosmography to anchor the type Ia supernova distance scale, we reduce the sensitivity of our H0 inference to cosmological model assumptions. For six different cosmological models, our combined inference on H0 ranges from ∼73–78 km s−1 Mpc−1, which is consistent with the local distance ladder constraints. 
    more » « less
  2. GW190521, the most massive binary black hole merger confidently detected by the LIGO-Virgo- KAGRA Collaboration, is the first gravitational-wave observation of an intermediate-mass black hole. The signal was followed approximately 34 days later by flare ZTF19abanrhr, detected in AGN J124942.3 þ 344929 by the Zwicky Transient Facility at the 78% spatial contour for GW190521’s sky localization. Using the GWTC-2.1 data release, we find that the association between GW190521 and flare ZTF19abanrhr as its electromagnetic counterpart is preferred over a random coincidence of the two transients with a log Bayes’ factor of 8.6, corresponding to an odds ratio of ∼5400∶1 for equal prior odds and ∼400∶1 assuming an astrophysical prior odds of 1=13. Given the association, the multimessenger signal allows for an estimation of the Hubble constant, finding H0 ¼ 102þ27 −25 km s−1 Mpc−1 when solely analyzing GW190521 and 79.2þ17.6 −9.6 km s−1 Mpc−1 assuming prior information from the binary neutron star merger GW170817, both consistent with the existing literature. 
    more » « less
  3. ABSTRACT

    We compare the constraints from two (2019 and 2021) compilations of H ii starburst galaxy (H iiG) data and test the model independence of quasar (QSO) angular size data using six spatially flat and non-flat cosmological models. We find that the new 2021 compilation of H iiG data generally provides tighter constraints and prefers lower values of cosmological parameters than those from the 2019 H iiG data. QSO data by themselves give relatively model-independent constraints on the characteristic linear size, lm, of the QSOs within the sample. We also use Hubble parameter [H(z)], baryon acoustic oscillation (BAO), Pantheon Type Ia supernova (SN Ia) apparent magnitude (SN-Pantheon), and DES-3 yr binned SN Ia apparent magnitude (SN-DES) measurements to perform joint analyses with H iiG and QSO angular size data, since their constraints are not mutually inconsistent within the six cosmological models we study. A joint analysis of H(z), BAO, SN-Pantheon, SN-DES, QSO, and the newest compilation of H iiG data provides almost model-independent summary estimates of the Hubble constant, $H_0=69.7\pm 1.2\ \rm {km\,s^{-1}\,Mpc^{-1}}$, the non-relativistic matter density parameter, $\Omega _{\rm m_0}=0.293\pm 0.021$, and lm = 10.93 ± 0.25 pc.

     
    more » « less
  4. Abstract We present the lens mass model of the quadruply-imaged gravitationally lensed quasar WFI2033−4723, and perform a blind cosmographical analysis based on this system. Our analysis combines (1) time-delay measurements from 14 years of data obtained by the COSmological MOnitoring of GRAvItational Lenses (COSMOGRAIL) collaboration, (2) high-resolution Hubble Space Telescope imaging, (3) a measurement of the velocity dispersion of the lens galaxy based on ESO-MUSE data, and (4) multi-band, wide-field imaging and spectroscopy characterizing the lens environment. We account for all known sources of systematics, including the influence of nearby perturbers and complex line-of-sight structure, as well as the parametrization of the light and mass profiles of the lensing galaxy. After unblinding, we determine the effective time-delay distance to be $4784_{-248}^{+399}~\mathrm{Mpc}$, an average precision of $6.6{{\ \rm per\ cent}}$. This translates to a Hubble constant $H_{0} = 71.6_{-4.9}^{+3.8}~\mathrm{km~s^{-1}~Mpc^{-1}}$, assuming a flat ΛCDM cosmology with a uniform prior on Ωm in the range [0.05, 0.5]. This work is part of the H0 Lenses in COSMOGRAIL’s Wellspring (H0LiCOW) collaboration, and the full time-delay cosmography results from a total of six strongly lensed systems are presented in a companion paper (H0LiCOW XIII). 
    more » « less
  5. Abstract

    We present cosmological constraints from a gravitational lensing mass map covering 9400 deg2reconstructed from measurements of the cosmic microwave background (CMB) made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with measurements of baryon acoustic oscillations and big bang nucleosynthesis, we obtain the clustering amplitudeσ8= 0.819 ± 0.015 at 1.8% precision,S8σ8(Ωm/0.3)0.5=0.840±0.028, and the Hubble constantH0= (68.3 ± 1.1) km s−1Mpc−1at 1.6% precision. A joint constraint with Planck CMB lensing yieldsσ8= 0.812 ± 0.013,S8σ8(Ωm/0.3)0.5=0.831±0.023, andH0= (68.1 ± 1.0) km s−1Mpc−1. These measurements agree with ΛCDM extrapolations from the CMB anisotropies measured by Planck. We revisit constraints from the KiDS, DES, and HSC galaxy surveys with a uniform set of assumptions and find thatS8from all three are lower than that from ACT+Planck lensing by levels ranging from 1.7σto 2.1σ. This motivates further measurements and comparison, not just between the CMB anisotropies and galaxy lensing but also between CMB lensing probingz∼ 0.5–5 on mostly linear scales and galaxy lensing atz∼ 0.5 on smaller scales. We combine with CMB anisotropies to constrain extensions of ΛCDM, limiting neutrino masses to ∑mν< 0.13 eV (95% c.l.), for example. We describe the mass map and related data products that will enable a wide array of cross-correlation science. Our results provide independent confirmation that the universe is spatially flat, conforms with general relativity, and is described remarkably well by the ΛCDM model, while paving a promising path for neutrino physics with lensing from upcoming ground-based CMB surveys.

     
    more » « less