skip to main content


Title: Chemomechanical modification of quantum emission in monolayer WSe2
Abstract

Two-dimensional (2D) materials have attracted attention for quantum information science due to their ability to host single-photon emitters (SPEs). Although the properties of atomically thin materials are highly sensitive to surface modification, chemical functionalization remains unexplored in the design and control of 2D material SPEs. Here, we report a chemomechanical approach to modify SPEs in monolayer WSe2through the synergistic combination of localized mechanical strain and noncovalent surface functionalization with aryl diazonium chemistry. Following the deposition of an aryl oligomer adlayer, the spectrally complex defect-related emission of strained monolayer WSe2is simplified into spectrally isolated SPEs with high single-photon purity. Density functional theory calculations reveal energetic alignment between WSe2defect states and adsorbed aryl oligomer energy levels, thus providing insight into the observed chemomechanically modified quantum emission. By revealing conditions under which chemical functionalization tunes SPEs, this work broadens the parameter space for controlling quantum emission in 2D materials.

 
more » « less
NSF-PAR ID:
10407189
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Solid‐state single photon emitters (SPEs) within atomically thin transition metal dichalcogenides (TMDs) have recently attracted interest as scalable quantum light sources for quantum photonic technologies. Among TMDs, WSe2monolayers (MLs) are promising for the deterministic fabrication and engineering of SPEs using local strain fields. The ability to reliably produce isolatable SPEs in WSe2is currently impeded by the presence of numerous spectrally overlapping states that occur at strained locations. Here nanoparticle (NP) arrays with precisely defined positions and sizes are employed to deterministically create strain fields in WSe2MLs, thus enabling the systematic investigation and control of SPE formation. Using this platform, electron beam irradiation at NP‐strained locations transforms spectrally overlapped sub‐bandgap emission states into isolatable, anti‐bunched quantum emitters. The dependence of the emission spectra of WSe2MLs as a function of strain magnitude and exposure time to electron beam irradiation is quantified and provides insight into the mechanism for SPE production. Excitons selectively funnel through strongly coupled sub‐bandgap states introduced by electron beam irradiation, which suppresses spectrally overlapping emission pathways and leads to measurable anti‐bunched behavior. The findings provide a strategy to generate isolatable SPEs in 2D materials with a well‐defined energy range.

     
    more » « less
  2. Abstract

    Here, ultra‐long lifetimes of defect‐trapped single quantum emitters (SQEs) in monolayer WSe2/hBN heterostructures are reported. The lifetimes of these SQEs are approximately 225 ns, more than two orders of magnitude larger than what has been previously reported for defect‐trapped excitons in WSe2. These SQEs consist of co‐linearly polarized doublet peaks with a fine structure splitting of 0.45 meV. Second‐order correlation measurements show antibunched single‐photon emission with a g(2)(0) value of ≈0.13. Through numerical analysis and modeling, it is shown how such long‐lifetime single emitters can arise from bright and dark exciton coupling in antisite defects on the W sites. Additionally, high‐quality single‐photon emission over a wide range of lifetimes—from 2 ns to over 200 ns—is also reported, suggesting a variety of other possible defect structures present. The flexibility to generate high fidelity single‐photon emission, over a wide range of lifetimes in a single material system, has potential in many optical quantum computing applications from high‐bit‐rate single‐photon sources to quantum memory devices.

     
    more » « less
  3. Abstract

    The monolayer transition metal dichalcogenides are an emergent semiconductor platform exhibiting rich excitonic physics with coupled spin-valley degree of freedom and optical addressability. Here, we report a new series of low energy excitonic emission lines in the photoluminescence spectrum of ultraclean monolayer WSe2. These excitonic satellites are composed of three major peaks with energy separations matching known phonons, and appear only with electron doping. They possess homogenous spatial and spectral distribution, strong power saturation, and anomalously long population (>6 µs) and polarization lifetimes (>100 ns). Resonant excitation of the free inter- and intravalley bright trions leads to opposite optical orientation of the satellites, while excitation of the free dark trion resonance suppresses the satellitesʼ photoluminescence. Defect-controlled crystal synthesis and scanning tunneling microscopy measurements provide corroboration that these features are dark excitons bound to dilute donors, along with associated phonon replicas. Our work opens opportunities to engineer homogenous single emitters and explore collective quantum optical phenomena using intrinsic donor-bound excitons in ultraclean 2D semiconductors.

     
    more » « less
  4. Abstract

    Two‐dimensional (2D) hexagonal boron nitride (hBN) is one of the most promising candidates to host solid‐state single photon emitters (SPEs) for various quantum technologies. However, the 2D nature with an atomic‐scale thickness leads to inevitable challenges in spectral variability caused by substrate disturbance, lattice strain heterogeneity, and defect variation. Here, three‐dimensional (3D) nanoarchitectured hBN is reported with integrated SPEs from native defects generated during high‐temperature chemical vapor deposition (CVD). The 3D hBN has a quasi‐periodic gyroid minimal surface structure and is composed of a continuous 2D hBN sheet with built‐in convex and concave curvatures that promote the formation of optically active and thermally robust native defects. The free‐standing feature of the gyroid hBN with a nearly zero mean curvature can effectively eliminate the substrate disturbance and minimize lattice strain heterogeneity. As a result, naturally occurring defects with a narrow SPE spectral distribution can be created and activated as color centers in the 3D hBN, and the density of the SPEs can be tailored by CVD temperature.

     
    more » « less
  5. Abstract

    The exotic properties of 2D materials made them ideal candidates for applications in quantum computing, flexible electronics, and energy technologies. A major barrier to their adaptation for industrial applications is their controllable and reproducible growth at a large scale. A significant effort has been devoted to the chemical vapor deposition (CVD) growth of wafer-scale highly crystalline monolayer materials through exhaustive trial-and-error experimentations. However, major challenges remain as the final morphology and growth quality of the 2D materials may significantly change upon subtle variation in growth conditions. Here, we introduced a multiscale/multiphysics model based on coupling continuum fluid mechanics and phase-field models for CVD growth of 2D materials. It connects the macroscale experimentally controllable parameters, such as inlet velocity and temperature, and mesoscale growth parameters such as surface diffusion and deposition rates, to morphology of the as-grown 2D materials. We considered WSe2as our model material and established a relationship between the macroscale growth parameters and the growth coverage. Our model can guide the CVD growth of monolayer materials and paves the way to their synthesis-by-design.

    Graphic abstract 
    more » « less