Costus flammulus is a new herbaceous species endemic to montane cloud forests of the volcanic cordilleras in northern Costa Rica. Costus flammulus has been mistaken for C. wilsonii, but phylogenetic evidence demonstrates that it is closely related to the widespread lowland species C. pulverulentus. Here, we used an integrated framework of species concepts to evaluate whether C. flammulus and C. pulverulentus are distinct species. First, we re-evaluate prior phylogenetic analyses to assess whether C. flammulus bifurcated from or budded off from within C. pulverulentus and whether C. flammulus is monophyletic. We then compare phenotypic traits to determine which diagnostic vegetative and inflorescence traits can be used to identify species in herbarium specimens and examine whether floral traits may confer floral isolation. We compare pollinator assemblages to examine whether pollinator specificity may contribute to reproductive isolation. Finally, we model species distributions and climatic niche overlap to assess ecogeographic isolation. We found that C. flammulus is a monophyletic species phenotypically, ecologically, and geographically distinct from C. pulverulentus and may have speciated as a peripheral isolate at the high elevation range edge of C. pulverulentus. Several lines of evidence, such as C. pulverulentus paraphyly, range size asymmetry, and C. flammulus’ nested distribution and vegetative traits, suggest that C. flammulus budded off from a C. pulverulentus‐like progenitor species, evolving to tolerate a colder and more seasonal montane environment.
more »
« less
Ecological and Evolutionary Origin of Costus flammulus (Costaceae): A New Species from the Montane Cloud Forests of the Volcanic Cordilleras in Northern Costa Rica
Abstract— Costus flammulus is a new herbaceous species endemic to montane cloud forests of the volcanic cordilleras in northern Costa Rica. Costus flammulus has been mistaken for C. wilsonii , but phylogenetic evidence demonstrates that it is closely related to the widespread lowland species C. pulverulentus . Here, we use an integrated framework of species concepts to evaluate whether C. flammulus and C. pulverulentus are distinct species. First, we re-evaluate prior phylogenetic analyses to assess whether C. flammulus bifurcated from or budded off from within C. pulverulentus and whether C. flammulus is monophyletic. We then compare phenotypic traits to determine which diagnostic vegetative and inflorescence traits can be used to identify species in herbarium specimens and examine whether floral traits may confer floral isolation. We compare pollinator assemblages to examine whether pollinator specificity may contribute to reproductive isolation. Finally, we model species distributions and climatic niche overlap to assess ecogeographic isolation. We found that C. flammulus is a monophyletic species phenotypically, ecologically, and geographically distinct from C. pulverulentus and may have speciated as a peripheral isolate at the high elevation range edge of C. pulverulentus . Several lines of evidence, such as C. pulverulentus paraphyly, range size asymmetry, and C. flammulus’ nested distribution and vegetative traits, suggest that C. flammulus budded off from a C. pulverulentus ‐like progenitor species, evolving to tolerate a colder and more seasonal montane environment.
more »
« less
- PAR ID:
- 10407214
- Date Published:
- Journal Name:
- Systematic Botany
- Volume:
- 48
- Issue:
- 1
- ISSN:
- 0363-6445
- Page Range / eLocation ID:
- 145 to 157
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Different populations of plant species can adapt to their local pollinators and diverge in floral traits accordingly. Floral traits are subject to pollinator‐driven natural selection to enhance plant reproductive success. Studies on temperate plant systems have shown pollinator‐driven selection results in floral trait variation along elevational gradients, but studies in tropical systems are lacking. We analyzed floral traits and pollinator assemblages in the Neotropical bee‐pollinated taxonCostus guanaiensisvar.tarmicusacross four sites along a steep elevational gradient in Peru. We found variations in floral traits of size, color, and reward, and in the pollinator assemblage along the elevational gradient. We examined our results considering two hypotheses, (1) local adaptation to different bee assemblages, and (2) the early stages of an evolutionary shift to a new pollinator functional group (hummingbirds). We found some evidence consistent with the adaptation ofC. guanaiensisvar.tarmicusto the local bee fauna along the studied elevational gradient. Corolla width across sites was associated with bee thorax width of the local most frequent pollinator. However, we could not rule out the possibility of the beginning of a bee‐to‐hummingbird pollination shift in the highest‐studied site. Our study is one of the few geographic‐scale analyses of floral trait and pollinator assemblage variation in tropical plant species. Our results broaden our understanding of plant‐pollinator interactions beyond temperate systems by showing substantial intraspecific divergence in both floral traits and pollinator assemblages across geographic space in a tropical plant species.more » « less
-
Abstract The spiral gingers (Costus L.) are a pantropical genus of herbaceous perennial monocots; the Neotropical clade of Costus radiated rapidly in the past few million years into over 60 species. The Neotropical spiral gingers have a rich history of evolutionary and ecological research that can motivate and inform modern genetic investigations. Here, we present the first 2 chromosome-level genome assemblies in the genus, for C. pulverulentus and C. lasius, and briefly compare their synteny. We assembled the C. pulverulentus genome from a combination of short-read data, Chicago and Dovetail Hi-C chromatin-proximity sequencing, and alignment with a linkage map. We annotated the genome by mapping a C. pulverulentus transcriptome and querying mapped transcripts against a protein database. We assembled the C. lasius genome with Pacific Biosciences HiFi long reads and alignment to the C. pulverulentus genome. These 2 assemblies are the first published genomes for non-cultivated tropical plants. These genomes solidify the spiral gingers as a model system and will facilitate research on the poorly understood genetic basis of tropical plant diversification.more » « less
-
Different populations of plant species can adapt to their local pollinators and diverge in floral traits accordingly. Floral traits are subject to pollinator-driven natural selection to enhance plant reproductive success. Studies on temperate plant systems have shown pollinator-driven selection results in floral trait variation along elevational gradients, but studies in tropical systems are lacking. We analyzed floral traits and pollinator assemblages in the Neotropical bee-pollinated taxon Costus guanaiensis var. tarmicus across four sites along a steep elevational gradient in Peru. We found variations in floral traits of size, color, and reward, and in the pollinator assemblage along the elevational gradient. We examined our results considering two hypotheses, (1) local adaptation to different bee assemblages, and (2) the early stages of an evolutionary shift to a new pollinator functional group (hummingbirds). We found some evidence consistent with the adaptation of C. guanaiensis var. tarmicus to the local bee fauna along the studied elevational gradient. Corolla width across sites was associated with bee thorax width of the local most frequent pollinator. However, we could not rule out the possibility of the beginning of a bee-to-hummingbird pollination shift in the highest-studied site. Our study is one of the few geographic-scale analyses of floral trait and pollinator assemblage variation in tropical plant species. Our results broaden our understanding of plant-pollinator interactions beyond temperate systems by showing substantial intraspecific divergence in both floral traits and pollinator assemblages across geographic space in a tropical plant species.more » « less
-
Summary The evolution of hummingbird pollination is common across angiosperms throughout the Americas, presenting an opportunity to examine convergence in both traits and environments to better understand how complex phenotypes arise. Here we examine independent shifts from bee to hummingbird pollination in the Neotropical spiral gingers (Costus) and address common explanations for the prevalence of transitions from bee to hummingbird pollination.We use floral traits of species with observed pollinators to predict pollinators of unobserved species and reconstruct ancestral pollination states on a well‐resolved phylogeny. We examine whether independent transitions evolve towards the same phenotypic optimum and whether shifts to hummingbird pollination correlate with elevation or climate.Traits predicting hummingbird pollination include small flower size, brightly colored floral bracts and the absence of nectar guides. We find many shifts to hummingbird pollination and no reversals, a single shared phenotypic optimum across hummingbird flowers, and no association between pollination and elevation or climate.Evolutionary shifts to hummingbird pollination inCostusare highly convergent and directional, involve a surprising set of traits when compared with other plants with analogous transitions and refute the generality of several common explanations for the prevalence of transitions from bee to hummingbird pollination.more » « less
An official website of the United States government

