skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data for: Ecological and evolutionary origin of Costus flammulus (Costaceae): A new species from the montane cloud forests of the volcanic cordilleras in northern Costa Rica
Costus flammulus is a new herbaceous species endemic to montane cloud forests of the volcanic cordilleras in northern Costa Rica. Costus flammulus has been mistaken for C. wilsonii, but phylogenetic evidence demonstrates that it is closely related to the widespread lowland species C. pulverulentus. Here, we used an integrated framework of species concepts to evaluate whether C. flammulus and C. pulverulentus are distinct species. First, we re-evaluate prior phylogenetic analyses to assess whether C. flammulus bifurcated from or budded off from within C. pulverulentus and whether C. flammulus is monophyletic. We then compare phenotypic traits to determine which diagnostic vegetative and inflorescence traits can be used to identify species in herbarium specimens and examine whether floral traits may confer floral isolation. We compare pollinator assemblages to examine whether pollinator specificity may contribute to reproductive isolation. Finally, we model species distributions and climatic niche overlap to assess ecogeographic isolation. We found that C. flammulus is a monophyletic species phenotypically, ecologically, and geographically distinct from C. pulverulentus and may have speciated as a peripheral isolate at the high elevation range edge of C. pulverulentus. Several lines of evidence, such as C. pulverulentus paraphyly, range size asymmetry, and C. flammulus’ nested distribution and vegetative traits, suggest that C. flammulus budded off from a C. pulverulentus‐like progenitor species, evolving to tolerate a colder and more seasonal montane environment.  more » « less
Award ID(s):
1737889
PAR ID:
10501917
Author(s) / Creator(s):
; ;
Publisher / Repository:
Dryad
Date Published:
Subject(s) / Keyword(s):
FOS: Biological sciences botany Plant ecology Plant evolution neotropical budding speciation floral isolation Ecogeographic isolation Plant system and evolution
Format(s):
Medium: X Size: 383411 bytes
Size(s):
383411 bytes
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract— Costus flammulus is a new herbaceous species endemic to montane cloud forests of the volcanic cordilleras in northern Costa Rica. Costus flammulus has been mistaken for C. wilsonii , but phylogenetic evidence demonstrates that it is closely related to the widespread lowland species C. pulverulentus . Here, we use an integrated framework of species concepts to evaluate whether C. flammulus and C. pulverulentus are distinct species. First, we re-evaluate prior phylogenetic analyses to assess whether C. flammulus bifurcated from or budded off from within C. pulverulentus and whether C. flammulus is monophyletic. We then compare phenotypic traits to determine which diagnostic vegetative and inflorescence traits can be used to identify species in herbarium specimens and examine whether floral traits may confer floral isolation. We compare pollinator assemblages to examine whether pollinator specificity may contribute to reproductive isolation. Finally, we model species distributions and climatic niche overlap to assess ecogeographic isolation. We found that C. flammulus is a monophyletic species phenotypically, ecologically, and geographically distinct from C. pulverulentus and may have speciated as a peripheral isolate at the high elevation range edge of C. pulverulentus . Several lines of evidence, such as C. pulverulentus paraphyly, range size asymmetry, and C. flammulus’ nested distribution and vegetative traits, suggest that C. flammulus budded off from a C. pulverulentus ‐like progenitor species, evolving to tolerate a colder and more seasonal montane environment. 
    more » « less
  2. Different populations of plant species can adapt to their local pollinators and diverge in floral traits accordingly. Floral traits are subject to pollinator-driven natural selection to enhance plant reproductive success. Studies on temperate plant systems have shown pollinator-driven selection results in floral trait variation along elevational gradients, but studies in tropical systems are lacking. We analyzed floral traits and pollinator assemblages in the Neotropical bee-pollinated taxon Costus guanaiensis var. tarmicus across four sites along a steep elevational gradient in Peru. We found variations in floral traits of size, color, and reward, and in the pollinator assemblage along the elevational gradient. We examined our results considering two hypotheses, (1) local adaptation to different bee assemblages, and (2) the early stages of an evolutionary shift to a new pollinator functional group (hummingbirds). We found some evidence consistent with the adaptation of C. guanaiensis var. tarmicus to the local bee fauna along the studied elevational gradient. Corolla width across sites was associated with bee thorax width of the local most frequent pollinator. However, we could not rule out the possibility of the beginning of a bee-to-hummingbird pollination shift in the highest-studied site. Our study is one of the few geographic-scale analyses of floral trait and pollinator assemblage variation in tropical plant species. Our results broaden our understanding of plant-pollinator interactions beyond temperate systems by showing substantial intraspecific divergence in both floral traits and pollinator assemblages across geographic space in a tropical plant species. 
    more » « less
  3. Abstract Different populations of plant species can adapt to their local pollinators and diverge in floral traits accordingly. Floral traits are subject to pollinator‐driven natural selection to enhance plant reproductive success. Studies on temperate plant systems have shown pollinator‐driven selection results in floral trait variation along elevational gradients, but studies in tropical systems are lacking. We analyzed floral traits and pollinator assemblages in the Neotropical bee‐pollinated taxonCostus guanaiensisvar.tarmicusacross four sites along a steep elevational gradient in Peru. We found variations in floral traits of size, color, and reward, and in the pollinator assemblage along the elevational gradient. We examined our results considering two hypotheses, (1) local adaptation to different bee assemblages, and (2) the early stages of an evolutionary shift to a new pollinator functional group (hummingbirds). We found some evidence consistent with the adaptation ofC. guanaiensisvar.tarmicusto the local bee fauna along the studied elevational gradient. Corolla width across sites was associated with bee thorax width of the local most frequent pollinator. However, we could not rule out the possibility of the beginning of a bee‐to‐hummingbird pollination shift in the highest‐studied site. Our study is one of the few geographic‐scale analyses of floral trait and pollinator assemblage variation in tropical plant species. Our results broaden our understanding of plant‐pollinator interactions beyond temperate systems by showing substantial intraspecific divergence in both floral traits and pollinator assemblages across geographic space in a tropical plant species. 
    more » « less
  4. Combinations of correlated floral traits have arisen repeatedly across angiosperms through convergent evolution in response to pollinator selection to optimize reproduction. While some plant groups exhibit very distinct combinations of traits adapted to specific pollinators (so-called pollination syndromes), others do not. Determining how floral traits diverge across clades and whether floral traits show predictable correlations in diverse groups of flowering plants is key to determining the extent to which pollinator-mediated selection drives diversification. The North AmericanSilenesectionPhysolychnisis an ideal group to investigate patterns of floral evolution because it is characterized by the evolution of novel red floral color, extensive floral morphological variation, polyploidy, and exposure to a novel group of pollinators (hummingbirds). We test for correlated patterns of trait evolution that would be consistent with convergent responses to selection in the key floral traits of color and morphology. We also consider both the role of phylogenic distance and geographic overlap in explaining patterns of floral trait variation. Inconsistent with phenotypically divergent pollination syndromes, we find very little clustering of North AmericanSileneinto distinct floral morphospace. We also find little evidence that phylogenetic history or geographic overlap explains patterns of floral diversity in this group. White- and pink-flowering species show extensive phenotypic diversity but are entirely overlapping in morphological variation. However, red-flowering species have much less phenotypic disparity and cluster tightly in floral morphospace. We find that red-flowering species have evolved floral traits that align with a traditional hummingbird syndrome, but that these trait values overlap with several white and pink species as well. Our findings support the hypothesis that convergent evolution does not always proceed through comparative phenotypic divergence, but possibly through sorting of standing ancestral variation. 
    more » « less
  5. Concern about pollinator populations is widespread, with bees documented to be in decline due to factors including habitat loss, disease, and pesticides. In addition, climate change may be an important cause of bee population losses, but few studies have examined bee abundance relationships with climate variables. Importantly, bees may respond directly to climate or may exhibit indirect responses to climate via changes in plant phenology or community composition. This study collected floral trait data to complement the Sevilleta LTER pollinator monitoring, plant phenology, and plant biomass datasets, with the aim of examining whether floral resource availability mediates bee responses to climate. For 71 common, animal-pollinated flowering plant species, we measured floral traits relevant to pollination in June–October 2018 and April–August 2019 within sites representing four ecosystem types at the Sevilleta National Wildlife Refuge: Plains grassland, Chihuahuan Desert grassland, Chihuahuan Desert shrubland, and piñon-juniper woodland. On a minimum of 5 individuals per plant species, we recorded the total number of open flowers and the corolla width of flowers, along with plant height and vegetative cover. These data may be used in combination with the Sevilleta LTER pollinator monitoring, phenology, and biomass datasets to examine how bee and floral resource abundance, diversity, and phenology vary across years and whether these changes correspond with one another, as well as to consider relationships among climate, floral resource abundance/diversity, and bee abundance/diversity. 
    more » « less