skip to main content

Title: Azimuthal invariance to looming stimuli in the Drosophila giant fiber escape circuit

Spatially invariant feature detection is a property of many visual systems that rely on visual information provided by two eyes. However, how information across both eyes is integrated for invariant feature detection is not fully understood. Here we investigate spatial invariance of looming responses in descending neurons (DNs) of Drosophila melanogaster. We find multiple looming responsive DNs integrate looming information across both eyes, even though their dendrites are restricted to a single visual hemisphere. One DN, the giant fiber (GF), responds invariantly to looming stimuli across tested azimuthal locations. We confirm visual information propagates to the GF from the contralateral eye through an unidentified pathway and demonstrate that the absence of this pathway alters GF responses to looming stimuli presented to the ipsilateral eye. Our data highlight a role for bilateral visual integration in generating consistent, looming-evoked escape responses that are robust across different stimulus locations and parameters.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
The Company of Biologists
Date Published:
Journal Name:
Journal of Experimental Biology
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Humans detect faces efficiently from a young age. Face detection is critical for infants to identify and learn from relevant social stimuli in their environments. Faces with eye contact are an especially salient stimulus, and attention to the eyes in infancy is linked to the emergence of later sociality. Despite the importance of both of these early social skills—attending to faces and attending to the eyes—surprisingly little is known about how they interact. We used eye tracking to explore whether eye contact influences infants' face detection. Longitudinally, we examined 2‐, 4‐, and 6‐month‐olds' (N = 65) visual scanning of complex image arrays with human and animal faces varying in eye contact and head orientation. Across all ages, infants displayed superior detection of faces with eye contact; however, this effect varied as a function of species and head orientation. Infants were more attentive to human than animal faces and were more sensitive to eye and head orientation for human faces compared to animal faces. Unexpectedly, human faces with both averted heads and eyes received the most attention. This pattern may reflect the early emergence of gaze following—the ability to look where another individual looks—which begins to develop around this age. Infants may be especially interested in averted gaze faces, providing early scaffolding for joint attention. This study represents the first investigation to document infants' attention patterns to faces systematically varying in their attentional states. Together, these findings suggest that infants develop early, specialized functional conspecific face detection.

    more » « less
  2. Abstract

    Sexually dimorphic behaviour is pervasive across animals, with males and females exhibiting different mate selection, parental care, foraging, dispersal, and territorial strategies. However, the genetic underpinnings of sexually dimorphic behaviours are poorly understood. Here we investigate gene networks and expression patterns associated with sexually dimorphic imprinting‐like learning in the butterflyBicyclus anynana. In this species, both males and females learn visual preferences, but learn preferences for different traits and use different signals as salient, unconditioned cues. To identify genes and gene networks associated with this behaviour, we examined gene expression profiles of the brains and eyes of male and female butterflies immediately post training and compared them to the same tissues of naïve individuals. We found more differentially expressed genes and a greater number of associated gene networks in the eyes, indicating a role of the peripheral nervous system in visual imprinting‐like learning. Females had higher chemoreceptor expression levels than males, supporting the hypothesized sexual dimorphic use of chemical cues during the learning process. In addition, genes that influenceB. anynanawing patterns (sexual ornaments), such asinvected,spalt, andapterous, were also differentially expressed in the brain and eye, suggesting that these genes may influence both sexual ornaments and the preferences for these ornaments. Our results indicate dynamic and sex‐specific responses to social scenario in both the peripheral and central nervous systems and highlight the potential role of wing patterning genes in mate preference and learning across the Lepidoptera.

    more » « less
  3. Abstract Decades of research have shown that global brain states such as arousal can be indexed by measuring the properties of the eyes. The spiking responses of neurons throughout the brain have been associated with the pupil, small fixational saccades, and vigor in eye movements, but it has been difficult to isolate how internal states affect the eyes, and vice versa. While recording from populations of neurons in the visual and prefrontal cortex (PFC), we recently identified a latent dimension of neural activity called “slow drift,” which appears to reflect a shift in a global brain state. Here, we asked if slow drift is correlated with the action of the eyes in distinct behavioral tasks. We recorded from visual cortex (V4) while monkeys performed a change detection task, and PFC, while they performed a memory-guided saccade task. In both tasks, slow drift was associated with the size of the pupil and the microsaccade rate, two external indicators of the internal state of the animal. These results show that metrics related to the action of the eyes are associated with a dominant and task-independent mode of neural activity that can be accessed in the population activity of neurons across the cortex. 
    more » « less
  4. null (Ed.)
    Stabilizing responses to sideslip disturbances are a critical part of the flight control system in flies. While strongly mediated by mechanoreception, much of the final response results from the wide-field motion detection system associated with vision. In order to be effective, these responses must match the disturbance they are aimed to correct. To do this, flies must estimate the velocity of the disturbance, although it is not known how they accomplish this task when presented with natural images or dot fields. The recent finding, that motion parallax in dot fields can modulate stabilizing responses only if perceived below the fly, raises the question of whether other image statistics are also processed differently between eye regions. One such parameter is the density of elements moving in translational optic flow. Depending on the habitat, there might be strong differences in the density of elements providing information about self-motion above and below the fly, which in turn could act as selective pressures tuning the visual system to process this parameter on a regional basis. By presenting laterally moving dot fields of different densities we found that, in Drosophila melanogaster , the amplitude of the stabilizing response is significantly affected by the number of elements in the field of view. Flies countersteer strongly within a relatively low and narrow range of element densities. But this effect is exclusive to the ventral region of the eye, and dorsal stimuli elicit an unaltered and stereotypical response regardless of the density of elements in the flow. This highlights local specialization of the eye and suggests the lower region may play a more critical role in translational flight stabilization. 
    more » « less
  5. About one in 3,500 people have a genetic disorder called neurofibromatosis type 1, often shortened to NF1, making it one of the most common inherited diseases. People with NF1 may have benign and cancerous tumors throughout the body, learning disabilities, developmental delays, curvature of the spine and bone abnormalities. Children with NF1 often experience difficulties with attention, hyperactivity, speech and language delays and impulsivity. They may also have autism spectrum disorder, or display symptoms associated with this condition. Studies in mice with a genetic mutation that mimics NF1 suggest that abnormal development in cells in the middle of the brain may cause the cognitive symptoms. These midbrain neurons produce a chemical called dopamine and send it throughout the brain. Dopamine is essential for concentration and it is involved in how the brain processes pleasurable experiences. Now, Robinson et al. show that, at rest, the NF1 model mice release dopamine less often than typical mice. This happens because, when there are no stimuli to respond to, neighboring cells slow down the activity of dopamine-producing neurons in NF1 model mice. In the experiments, both NF1 model mice and typical mice were taught to associate environmental cues with rewards or punishments. Robinson et al. then measured the release of dopamine in the mice using a sensor called dLight1, which produces different intensities of fluorescent light depending on the amount of dopamine present. This revealed that the NF1 model mice produced more dopamine in response to visual cues and had enhanced behavioral responses to these stimuli. For example, when a looming disc that mimics predators approached them from above, the NF1 model mice tried to hide in an exaggerated way compared to the typical mice. Previously, it had been shown that this type of behavior is due to the activity of the dopamine-producing neurons' neighboring cells, which Robinson et al. found is greater in NF1 model mice. Next, Robinson et al. stopped neighboring cells from interfering with the dopamine-producing neurons in NF1 model mice. This restored dopamine release to normal levels at rest, and stopped the mice from overreacting to the looming disc. The experiments help explain how the NF1 model mice process visual information. Further study of the role dopamine plays in cognitive symptoms in people with NF1 may help scientists develop treatments for the condition. 
    more » « less