- Award ID(s):
- 1654325
- PAR ID:
- 10407276
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 158
- Issue:
- 11
- ISSN:
- 0021-9606
- Page Range / eLocation ID:
- 114105
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Reconstituted photosynthetic proteins which are activated upon exposure to solar energy hold enormous potential for powering future solid state devices and solar cells. The functionality and integration of these proteins into such devices has been successfully enabled by lipid-like peptides. Yet, a fundamental understanding of the organization of these peptides with respect to the photosynthetic proteins and themselves remains unknown and is critical for guiding the design of such light-activated devices. This study investigates the relative organization of one such peptide sequence V 6 K 2 (V: valine and K: lysine) within assemblies. Given the expansive spatiotemporal scales associated with this study, a hybrid coarse-grained (CG) model which captures the structure, conformation and aggregation of the peptide is adopted. The CG model uses a combination of iterative Boltzmann inversion and force matching to provide insight into the relative organization of V 6 K 2 in assemblies. The CG model reproduces the structure of a V 6 K 2 peptide sequence along with its all atom (AA) solvation structure. The relative organization of multiple peptides in an assembly, as captured by CG simulations, is in agreement with corresponding results from AA simulations. Also, a backmapping procedure reintroduces the AA details of the peptides within the aggregates captured by the CG model to demonstrate the relative organization of the peptides. Furthermore, a large number of peptides self-assemble into an elongated micelle in the CG simulation, which is consistent with experimental findings. The coarse-graining procedure is tested for transferability to longer peptide sequences, and hence can be extended to other amphiphilic peptide sequences.more » « less
-
Abstract Water-soluble peptidomimetics, including peptoids, are promising functional surrogates for biologically relevant, amphiphilic, helical peptides. Twenty amphiphilic peptoid hexamers with predicted helical structures were designed, prepared, and studied using circular dichroism (CD) spectroscopy. The site-specific contributions of aromatic and charged residues to the helical structure of peptoid hexamers in aqueous solution was evaluated, revealing that aromatic residue positioning most significantly impacts structure.
-
The process of self-assembly of biomolecules underlies the formation of macromolecular assemblies, biomolecular materials and protein folding, and thereby is critical in many disciplines and related applications. This process typically spans numerous spatiotemporal scales and hence, is well suited for scientific interrogation via coarse-grained (CG) models used in conjunction with a suitable computational approach. This perspective provides a discussion on different coarse-graining approaches which have been used to develop CG models that resolve the process of self-assembly of biomolecules.
-
Ensembles of amino acid side chains often dominate the interfacial interactions of intrinsically disordered proteins; however, backbone contributions are far from negligible. Using a combination of nanoscale force measurements and molecular dynamics simulations, we demonstrated with analogous mussel-mimetic adhesive peptides and peptoids both 34 residues long that highly divergent adhesive/cohesive outcomes can be achieved on mica surfaces by altering backbone chemistry only. The Phe, Tyr, and Dopa containing peptoid variants used in this study deposited as dehydrated and incompressible films that facilitated analysis of peptoid side chain contributions to adhesion and cohesion. For example, whereas Phe and Dopa peptoids exhibited similar cohesion, Dopa peptoids were ∼3 times more adhesive than Phe peptoids on mica. Compared with the peptides, Phe peptoid achieved only ∼20% of Phe containing peptide adhesion, but the Dopa peptoids were >2-fold more adhesive than the Dopa peptides. Cation−π interactions accounted for some but not all of the cohesive interactions. Our results were corroborated by molecular dynamics simulations and highlight the importance of backbone chemistry and the potential of peptoids or peptoid/peptide hybrids as wet adhesives and primers.more » « less
-
The integral equation coarse-graining (IECG) approach is a promising high-level coarse-graining (CG) method for polymer melts, with variable resolution from soft spheres to multi CG sites, which preserves the structural and thermodynamical consistencies with the related atomistic simulations. When compared to the atomistic description, the procedure of coarse-graining results in smoother free energy surfaces, longer-ranged potentials, a decrease in the number of interaction sites for a given polymer, and more. Because these changes have competing effects on the computational efficiency of the CG model, care needs to be taken when studying the effect of coarse-graining on the computational speed-up in CG molecular dynamics simulations. For instance, treatment of long-range CG interactions requires the selection of cutoff distances that include the attractive part of the effective CG potential and force. In particular, we show how the complex nature of the range and curvature of the effective CG potential, the selection of a suitable CG timestep, the choice of the cutoff distance, the molecular dynamics algorithms, and the smoothness of the CG free energy surface affect the efficiency of IECG simulations. By direct comparison with the atomistic simulations of relatively short chain polymer melts, we find that the overall computational efficiency is highest for the highest level of CG (soft spheres), with an overall improvement of the computational efficiency being about 10 6 –10 8 for various CG levels/resolutions. Therefore, the IECG method can have important applications in molecular dynamics simulations of polymeric systems. Finally, making use of the standard spatial decomposition algorithm, the parallel scalability of the IECG simulations for various levels of CG is presented. Optimal parallel scaling is observed for a reasonably large number of processors. Although this study is performed using the IECG approach, its results on the relation between the level of CG and the computational efficiency are general and apply to any properly-constructed CG model.more » « less