skip to main content


Title: Coarse-graining simulation approaches for polymer melts: the effect of potential range on computational efficiency
The integral equation coarse-graining (IECG) approach is a promising high-level coarse-graining (CG) method for polymer melts, with variable resolution from soft spheres to multi CG sites, which preserves the structural and thermodynamical consistencies with the related atomistic simulations. When compared to the atomistic description, the procedure of coarse-graining results in smoother free energy surfaces, longer-ranged potentials, a decrease in the number of interaction sites for a given polymer, and more. Because these changes have competing effects on the computational efficiency of the CG model, care needs to be taken when studying the effect of coarse-graining on the computational speed-up in CG molecular dynamics simulations. For instance, treatment of long-range CG interactions requires the selection of cutoff distances that include the attractive part of the effective CG potential and force. In particular, we show how the complex nature of the range and curvature of the effective CG potential, the selection of a suitable CG timestep, the choice of the cutoff distance, the molecular dynamics algorithms, and the smoothness of the CG free energy surface affect the efficiency of IECG simulations. By direct comparison with the atomistic simulations of relatively short chain polymer melts, we find that the overall computational efficiency is highest for the highest level of CG (soft spheres), with an overall improvement of the computational efficiency being about 10 6 –10 8 for various CG levels/resolutions. Therefore, the IECG method can have important applications in molecular dynamics simulations of polymeric systems. Finally, making use of the standard spatial decomposition algorithm, the parallel scalability of the IECG simulations for various levels of CG is presented. Optimal parallel scaling is observed for a reasonably large number of processors. Although this study is performed using the IECG approach, its results on the relation between the level of CG and the computational efficiency are general and apply to any properly-constructed CG model.  more » « less
Award ID(s):
1665466
NSF-PAR ID:
10105624
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Soft Matter
Volume:
14
Issue:
35
ISSN:
1744-683X
Page Range / eLocation ID:
7126 to 7144
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Our analytically based technique for coarse-graining (CG) polymer simulations dramatically improves spatial and temporal scaling while preserving thermodynamic quantities and bulk properties. The purpose of CG codes is to run more efficient molecular dynamics simulations, yet the research field generally lacks thorough analysis of how such codes scale with respect to full-atom representations. This paper conducts an in-depth performance study of highly realistic polymer melts on modern supercomputing systems. We also present a workflow that integrates our analytical solution for calculating CG forces with new high-performance techniques for mapping back and forth between the atomistic and CG descriptions in LAMMPS. The workflow benefits from the performance of CG, while maintaining full-atom accuracy. Our results show speedups up to 12x faster than atomistic simulations. 
    more » « less
  2. Abstract

    Bottom‐up prediction of physical performance of glass‐forming (GF) polymers via coarse‐grained (CG) modeling is challenging because these CG models normally experience significantly altered dynamics that strongly vary with temperature. Building upon the recently developed energy‐renormalization (ER) coarse‐graining method based on molecular dynamics simulations, generalized entropy theory (GET) is employed to theoretically investigate the influence of fundamental molecular parameters on CG modeling of polymers having different glass “fragilities” Taking a linear polymer melt as a model system within the GET framework, it is shown that the chain bending rigidity and cohesive interaction play critical roles in the glass formation of polymers and their CG analogs. To coarse‐grain polymers having a higher fragility index, it requires greater magnitudes of ER factor εCGto rescale the cohesive interaction strength under coarse‐graining and thus recover the atomistic relaxation dynamics over a wide temperature range. The GET further predicts that a higher degree of coarse‐graining generally requires greater magnitudes of εCGdue to the influence of loss of configuration entropyscon the dynamics. GET analyses herein theoretically demonstrate the efficacy of the ER method toward building a multiscale temperature transferable modeling framework for GF polymers, and confirm the importance of preservingscin CG modeling of dynamics of soft materials.

     
    more » « less
  3. null (Ed.)
    Assembling peptides allow the creation of structurally complex materials, where amino acid selection influences resulting properties. We present a synergistic approach of experiments and simulations for examining the influence of natural and non-natural amino acid substitutions via incorporation of charged residues and a reactive handle on the thermal stability and assembly of multifunctional collagen mimetic peptides (CMPs). Experimentally, we observed inclusion of charged residues significantly decreased the melting temperature of CMP triple helices with further destabilization upon inclusion of the reactive handle. Atomistic simulations of a single CMP triple helix in explicit water showed increased residue-level and helical structural fluctuations caused by the inclusion of the reactive handle; however, these atomistic simulations cannot be used to predict changes in CMP melting transition. Coarse-grained (CG) simulations of CMPs at experimentally relevant solution conditions, showed, qualitatively, the same trends as experiments in CMP melting transition temperature with CMP design. These simulations show that when charged residues are included electrostatic repulsions significantly destabilize the CMP triple helix and that an additional inclusion of a reactive handle does not significantly change the melting transition. Based on findings from both experiments and simulations, the sequence design was refined for increased CMP triple helix thermal stability, and the reactive handle was utilized for the incorporation of the assembled CMPs within covalently crosslinked hydrogels. Overall, a unique approach was established for predicting stability of CMP triple helices for various sequences prior to synthesis, providing molecular insights for sequence design towards the creation of bulk nanostructured soft biomaterials. 
    more » « less
  4. Coarse-grained (CG) models have been successful in simulating the chemical properties of lipid bilayers, but accurate treatment of membrane proteins and lipid-protein molecular interactions remains a challenge. The CgProt force field, original developed with the multiscale coarse graining method, is assessed by comparing the potentials of mean force for sidechain insertion in a DOPC bilayer to results reported for atomistic molecular dynamics simulations. Reassignment of select CG sidechain sites from the apolar to polar site type was found to improve the attractive interfacial behavior of tyrosine, phenylalanine and asparagine as well as charged lysine and arginine residues. The solvation energy at membrane depths of 0, 1.3 and 1.7 nm correlates with experimental partition coefficients in aqueous mixtures of cyclohexane, octanol and POPC, respectively, for sidechain analogs and Wimley-White peptides. These experimental values serve as important anchor points in choosing between alternate CG models based on their observed permeation profiles, particularly for Arg, Lys and Gln residues where the all-atom OPLS solvation energy does not agree well with experiment. Available partitioning data was also used to reparameterize the representation of the peptide backbone, which needed to be made less attractive for the bilayer hydrophobic core region. The newly developed force field, CgProt 2.4, correctly predicts the global energy minimum in the potentials of mean force for insertion of the uncharged membrane-associated peptides LS3 and WALP23. CgProt will find application in studies of lipid-protein interactions and the conformational properties of diverse membrane protein systems. 
    more » « less
  5. Abstract Highlights

    CG modeling is performed to explore the thermomechanical behavior of PCN.

    Effects of nanoclay weight percentage and size on modulus are studied.

    Interface leads to nanoconfinement effect onTgand molecular stiffness.

    Correlations between molecular stiffness and modulus are identified.

    Simulations show spatial variation of dynamical heterogeneity.

     
    more » « less