- Award ID(s):
- 1720415
- Publication Date:
- NSF-PAR ID:
- 10407361
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 156
- Issue:
- 9
- Page Range or eLocation-ID:
- 094710
- ISSN:
- 0021-9606
- Sponsoring Org:
- National Science Foundation
More Like this
-
The method of surface grating decay has been used to measure surface diffusion in the glasses of two rod-like molecules posaconazole (POS) and itraconazole (ITZ). Although structurally similar antifungal medicines, ITZ forms liquid-crystalline phases while POS does not. Surface diffusion in these systems is significantly slower than in the glasses of quasi-spherical molecules of similar volume when compared at the glass transition temperature T g . Between the two systems, ITZ has slower surface diffusion. These results are explained on the basis of the near-vertical orientation of the rod-like molecules at the surface and their deep penetration into the bulk where mobility is low. For molecular glasses without extensive hydrogen bonds, we find that the surface diffusion coefficient at T g decreases smoothly with the penetration depth of surface molecules and the trend has the double-exponential form for the surface mobility gradient observed in simulations. This supports the view that these molecular glasses have a similar mobility vs. depth profile and their different surface diffusion rates arise simply from the different depths at which molecules are anchored. Our results also provide support for a previously observed correlation between the rate of surface diffusion and the fragility of the bulk liquid.
-
A bstract The production of prompt D 0 , D + , and D *+ mesons was measured at midrapidity (| y | < 0.5) in Pb–Pb collisions at the centre-of-mass energy per nucleon–nucleon pair $$ \sqrt{s_{\mathrm{NN}}} $$ s NN = 5 . 02 TeV with the ALICE detector at the LHC. The D mesons were reconstructed via their hadronic decay channels and their production yields were measured in central (0–10%) and semicentral (30–50%) collisions. The measurement was performed up to a transverse momentum ( p T ) of 36 or 50 GeV/c depending on the D meson species and the centrality interval. For the first time in Pb–Pb collisions at the LHC, the yield of D 0 mesons was measured down to p T = 0, which allowed a model-independent determination of the p T -integrated yield per unit of rapidity (d N/ d y ). A maximum suppression by a factor 5 and 2.5 was observed with the nuclear modification factor ( R AA ) of prompt D mesons at p T = 6–8 GeV/c for the 0–10% and 30–50% centrality classes, respectively. The D-meson R AA is compared with that of charged pions, charged hadrons, and Jmore »
-
Understanding impacts of secondary organic aerosol (SOA) in air requires a molecular-level understanding of particle growth via interactions between gases and particle surfaces. The interactions of three gaseous organic nitrates with selected organic substrates were measured at 296 K using attenuated total reflection Fourier transform infrared spectroscopy. The organic substrates included a long chain alkane (triacontane, TC), a keto-acid (pinonic acid, PA), an amorphous ester oligomer (poly(ethylene adipate) di-hydroxy terminated, PEA), and laboratory-generated SOA from α-pinene ozonolysis. There was no uptake of the organic nitrates on the non-polar TC substrate, but significant uptake occurred on PEA, PA, and α-pinene SOA. Net uptake coefficients ( γ ) at the shortest reaction times accessible in these experiments ranged from 3 × 10 −4 to 9 × 10 −6 and partition coefficients ( K ) from 1 × 10 7 to 9 × 10 4 . Trends in γ did not quantitatively follow trends in K , suggesting that the intermolecular forces involved in gas–surface interactions are not the same as those in the bulk, which is supported by theoretical calculations. Kinetic modeling showed that nitrates diffused throughout the organic films over several minutes, and that the bulk diffusion coefficients evolved as uptake/desorptionmore »
-
Abstract. Information on the rate of diffusion of organic moleculeswithin secondary organic aerosol (SOA) is needed to accurately predict theeffects of SOA on climate and air quality. Diffusion can be important forpredicting the growth, evaporation, and reaction rates of SOA under certainatmospheric conditions. Often, researchers have predicted diffusion rates oforganic molecules within SOA using measurements of viscosity and theStokes–Einstein relation (D∝1/η, where D is the diffusioncoefficient and η is viscosity). However, the accuracy of thisrelation for predicting diffusion in SOA remains uncertain. Usingrectangular area fluorescence recovery after photobleaching (rFRAP), wedetermined diffusion coefficients of fluorescent organic molecules over8 orders in magnitude in proxies of SOA including citric acid, sorbitol,and a sucrose–citric acid mixture. These results were combined withliterature data to evaluate the Stokes–Einstein relation for predictingthe diffusion of organic molecules in SOA. Although almost all the data agreewith the Stokes–Einstein relation within a factor of 10, a fractionalStokes–Einstein relation (D∝1/ηξ) with ξ=0.93is a better model for predicting the diffusion of organic molecules in the SOAproxies studied. In addition, based on the output from a chemical transportmodel, the Stokes–Einstein relation can overpredict mixing times of organicmolecules within SOA by as much as 1 order of magnitude at an altitudeof ∼3 km compared to the fractional Stokes–Einsteinmore »
-
Abstract The glassy solid electrolyte Lithium phosphorous oxynitride (LiPON) has been widely researched in thin film solid state battery format due to its outstanding stability when cycled against lithium. In addition, recent reports show thin film LiPON having interesting mechanical behaviors, especially its ability to resist micro‐scale cracking via densification and shear flow. In the present study, we have produced bulk LiPON glasses with varying nitrogen contents by ammonolysis of LiPO3melts. The resulting compositions were determined to be LiPO3‐3z/2Nz, where 0 ≤ z ≤ 0.75, and the z value of 0.75 is among the highest ever reported for this series of LiPON glasses. The short‐range order structures of the different resulting compositions were characterized by infrared, Raman,31P magic angle spinning nuclear magnetic resonance, and X‐ray photoelectron spectroscopies. Instrumented nano‐indentation was used to measure mechanical properties. It was observed that similar to previous studies, both trigonally coordinated (Nt) and doubly bonded (Nd) N co‐exist in the glasses in about the same amounts for
z ≤ 0.36, the limit of N content in most previous studies. For glasses withz > 0.36, it was found that the fraction of the Ntincreased significantly while the fraction of Ndcorrespondingly decreased. The incorporation of nitrogen increased both the elastic modulus andmore »