Abstract The densities of highly competent plant hosts (i.e. those that are susceptible to and successfully transmit a pathogen) may shape pathogen community composition and disease severity, altering disease risk and impacts. Life history and evolutionary history can influence host competence; longer lived species tend to be better defended than shorter lived species and pathogens adapt to infect species with which they have longer evolutionary histories. It is unclear, however, how the densities of species that differ in competence due to life and evolutionary histories affect plant pathogen community composition and disease severity.We examined foliar fungal pathogens of two host groups in a California grassland: native perennial and non‐native annual grasses. We first characterized pathogen community composition and disease severity of the two host groups to approximate differences in competence. We then used observational and manipulated gradients of native perennial and non‐native annual grass densities to assess the effects of each host group on pathogen community composition and disease severity in 1‐m2plots.Native perennial and non‐native annual grasses hosted distinct pathogen communities but shared generalist pathogens. Native perennial grasses experienced 26% higher disease severity than non‐native annuals. Only the observational gradient of native perennial grass density affected disease severity; there were no other significant relationships between host group density and either disease severity or pathogen community composition.Synthesis. The life and evolutionary histories of grasses likely influence their competence for different pathogen species, exemplified by distinct pathogen communities and differences in disease severity. However, there was limited evidence that the density of either host group affected pathogen community composition or disease severity. Therefore, competence for different pathogens likely shapes pathogen community composition and disease severity but may not interact with host density to alter disease risk and impacts at small scales.
more »
« less
Effects of abiotic heterogeneity on species densities and interaction strengths lead to different spatial biodiversity patterns
During community assembly, abiotic factors can influence species at multiple stages during their life history, for example by affecting early settlement or establishment probabilities and thus initial densities (route 1: abiotic effects on density), or later by affecting the strength of biotic interactions during subsequent life stages (route 2: abiotic effects on interaction strengths). Since real abiotic landscapes are multivariate and complex, how these two distinct routes of abiotic influence affect community patterns has not been quantified. Using an individual-based spatially explicit simulation model, we compared scenarios where abiotic conditions shaped initial densities, interaction strengths, or both, of plant species with unique abiotic niches. We then partitioned the effect of the abiotic landscape on community patterns into components arising from variable density, variable interaction strengths, and their interaction. Even when plants responded to identical landscapes, variable density and variable interaction strengths led to different community patterns, and their combined effects were non-additive. Variable density promoted more spatial structure, while variable interaction strengths promoted higher local species richness. We highlight important implications these findings have in applied plant community ecology.
more »
« less
- Award ID(s):
- 1840221
- PAR ID:
- 10407414
- Date Published:
- Journal Name:
- Frontiers in Ecology and Evolution
- Volume:
- 11
- ISSN:
- 2296-701X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Plant-associated fungi can ameliorate abiotic stress in their hosts, and changes in these fungal communities can alter plant productivity, species interactions, community structure and ecosystem processes. We investigated the response of root-associated fungi to experimental drought (66% reduction in growing season precipitation) across six North American grassland ecosystem types to determine how extreme drought alters root-associated fungi, and understand what abiotic factors influence root fungal community composition across grassland ecosystems. Next generation sequencing of the fungal ITS2 region demonstrated that drought primarily re-ordered fungal species’ relative abundances within host plant species, with different fungal responses depending on host identity. Grass species that declined more under drought trended toward less community re-ordering of root fungi than species less sensitive to drought. Host identity and grassland ecosystem type defined the magnitude of drought effects on community composition, diversity, and root colonization, and the most important factor affecting fungal composition was plant species identity.more » « less
-
Plant-soil feedbacks (PSFs) are interactions among plants, soil organisms, and abiotic soil conditions that influence plant performance, plant species diversity, and community structure, ultimately driving ecosystem processes. We review how climate change will alter PSFs and their potential consequences for ecosystem functioning. Climate change influences PSFs through the performance of interacting species and altered community composition resulting from changes in species distributions. Climate change thus affects plant inputs into the soil subsystem via litter and rhizodeposits and alters the composition of the living plant roots with which mutualistic symbionts, decomposers, and their natural enemies interact. Many of these plant-soil interactions are species-specific and are greatly affected by temperature, moisture, and other climate-related factors. We make a number of predictions concerning climate change effects on PSFs and consequences for vegetation-soil-climate feedbacks while acknowledging that they may be context-dependent, spatially heterogeneous, and temporally variable.more » « less
-
Abstract Species interaction effects on populations can vary in both magnitude (i.e. strong vs. weak) and sign (positive, negative, or no effect). Context‐dependent effects of species interactions occur when the sign or strength of the interaction's effect on population growth rate changes across abiotic gradients.We know that species can vary substantially in the degree of context dependence they exhibit, even across similar abiotic gradients. However, few studies have characterised context dependence of co‐occurring species, limiting our ability to understand the implications of context dependence for species interaction effects on community composition.Using over three decades of data collected for 13 tallgrass prairie forbs at the Konza Prairie Biological Station, we parameterise density structured population models that predict population dynamics as functions of abiotic conditions and bison herbivory. We use these models to estimate the degree of context dependence in responses to bison herbivory for 13 species across three abiotic gradients: weather, fire frequency and soil type.All species showed significant context dependence for fire frequency in the same direction, though with variable magnitude, such that herbivory increased cover with more frequent fires. Context dependence with weather and soil type varied dramatically across species in both direction and magnitude. For example, herbivory effects on 3/13 species were stronger in wet conditions, but herbivory effects on 5/13 species were stronger in dry conditions. Thus, context dependence exhibited by individual species, as opposed to effects of abiotic conditions on the relative abundances of species, could generate much of the weather‐dependent effects of herbivory on community composition.Synthesis: Our work suggests that species can vary dramatically in the presence, direction and magnitude of context dependence, even when occurring in the same community and when considering the same species interaction (i.e. response to a herbivore). In addition, we find that context dependence could drive substantial variation in the effect of species interactions on community characteristics (e.g. composition) across multiple abiotic gradients.more » « less
-
Abstract As extreme climate events are predicted to become more frequent because of global climate change, understanding their impacts on natural systems is crucial. Tropical forests are vulnerable to droughts associated with extreme El Niño events. However, little is known about how tropical seedling communities respond to El Niño–related droughts, even though patterns of seedling survival shape future forest structure and diversity. Using long‐term data from eight tropical moist forests spanning a rainfall gradient in central Panama, we show that community‐wide seedling mortality increased by 11% during the extreme 2015–16 El Niño, with mortality increasing most in drought‐sensitive species and in wetter forests. These results indicate that severe El Niño–related droughts influence understory dynamics in tropical forests, with effects varying both within and across sites. Our findings suggest that predicted increases in the frequency of extreme El Niño events will alter tropical plant communities through their effects on early life stages.more » « less
An official website of the United States government

