skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Increased mortality of tropical tree seedlings during the extreme 2015–16 El Niño
Abstract As extreme climate events are predicted to become more frequent because of global climate change, understanding their impacts on natural systems is crucial. Tropical forests are vulnerable to droughts associated with extreme El Niño events. However, little is known about how tropical seedling communities respond to El Niño–related droughts, even though patterns of seedling survival shape future forest structure and diversity. Using long‐term data from eight tropical moist forests spanning a rainfall gradient in central Panama, we show that community‐wide seedling mortality increased by 11% during the extreme 2015–16 El Niño, with mortality increasing most in drought‐sensitive species and in wetter forests. These results indicate that severe El Niño–related droughts influence understory dynamics in tropical forests, with effects varying both within and across sites. Our findings suggest that predicted increases in the frequency of extreme El Niño events will alter tropical plant communities through their effects on early life stages.  more » « less
Award ID(s):
1845403
PAR ID:
10450120
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
27
Issue:
20
ISSN:
1354-1013
Page Range / eLocation ID:
p. 5043-5053
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 'Panama-El-Nino-publish.zip' contains all the code and data necessary to reproduce the analyses in the manuscript. Please unzip the file and see README.md for instructions.</div>'rocker-geospatial-rstan.sif' is a Singularity container that comes with all necessary packages pre-installed. Please seed README.md in the 'Panama-El-Nino-publish.zip' file for instructions.</div></div>Abstract</b></div>As extreme climate events are predicted to become more frequent due to global climate change, understanding their impacts on natural systems is crucial. Tropical forests are vulnerable to droughts associated with extreme El Niño events. However, little is known about how tropical seedling communities respond to El Niño-related droughts, even though patterns of seedling survival shape future forest structure and diversity. Using long-term data from eight tropical moist forests spanning a rainfall gradient in central Panama, we show that community-wide seedling mortality increased by 11% during the extreme 2015-16 El Niño, with mortality increasing most in drought sensitive species and in wetter forests. These results indicate that severe El Niño-related droughts influence understory dynamics in tropical forests, with effects varying both within and across sites. Our findings suggest that predicted increases in the frequency of extreme El Niño events will alter tropical plant communities through effects on early life stages.</div></div></div> 
    more » « less
  2. Tropical woody plants store ∼230 petagrams of carbon (PgC) in their aboveground living biomass. This review suggests that these stocks are currently growing in primary forests at rates that have decreased in recent decades. Droughts are an important mechanism in reducing forest C uptake and stocks by decreasing photosynthesis, elevating tree mortality, increasing autotrophic respiration, and promoting wildfires. Tropical forests were a C source to the atmosphere during the 2015–2016 El Niño–related drought, with some estimates suggesting that up to 2.3 PgC were released. With continued climate change, the intensity and frequency of droughts and fires will likely increase. It is unclear at what point the impacts of severe, repeated disturbances by drought and fires could exceed tropical forests’ capacity to recover. Although specific threshold conditions beyond which ecosystem properties could lead to alternative stable states are largely unknown, the growing body of scientific evidence points to such threshold conditions becoming more likely as climate and land use change across the tropics. ▪ Droughts have reduced forest carbon uptake and stocks by elevating tree mortality, increasing autotrophic respiration, and promoting wildfires. ▪ Threshold conditions beyond which tropical forests are pushed into alternative stable states are becoming more likely as effects of droughts intensify. 
    more » « less
  3. Abstract Lianas are key components of tropical forests, particularly at sites with more severe dry seasons. In contrast, trees are more abundant and speciose in wetter areas. The seasonal growth advantage (SGA) hypothesis postulates that such contrasting distributions are produced by higher liana growth relative to trees during seasonal droughts. The SGA has been investigated for larger size classes (e.g., ≥5 cm diameter at 1.3 m, dbh), but rarely for seedlings. Using eight annual censuses of >12,000 seedlings of 483 tree and liana species conducted at eight 1‐ha plots spanning a strong rainfall gradient in central Panama, we evaluated whether liana seedlings had higher growth and/or survival rates than tree seedlings at sites with stronger droughts. We also tested whether an extreme El Niño drought during the study period had a more negative effect on tree compared to liana seedlings. The absolute density of liana seedlings was similar across the rainfall gradient, ranging from 0.32 individuals/m2(0.20–0.49, 95% credible interval [CI]) at the driest end of the gradient and 0.27 individuals/m2(0.13–0.51 95% CI) at the wettest end of the gradient. The relative density of liana seedlings compared to tree seedlings was higher at sites with stronger dry seasons (0.27, 0.21–0.33, 95% CI), compared to wetter sites (0.12, 0.04–0.20 95% CI), due to lower tree seedling densities at drier sites. However, liana seedlings did not grow or survive better than tree seedlings in drier sites compared to wetter sites. Tree seedlings were more negatively impacted in terms of mortality by the extreme El Niño drought than liana seedlings, with an increase in annual mortality rate of 0.013 (0.003–0.025 95% CI) compared to lianas of −0.009 (−0.028 to 0.008 95% CI), but not growth. Our results indicate that lianas do not have a SGA over trees at the seedling stage. Instead, higher survival of liana versus tree seedlings during severe droughts or differences in liana versus tree fecundity or germination across the rainfall gradient likely explain why liana seedlings have higher relative densities at drier sites. 
    more » « less
  4. Abstract El Niño/Southern Oscillation variability has conspicuous impacts on ecosystems and severe weather. Here, we probe the effects of anthropogenic aerosols and greenhouse gases on El Niño/Southern Oscillation variability during the historical period using a broad set of climate models. Increased aerosols significantly amplify El Niño/Southern Oscillation variability primarily through weakening the mean advection feedback and strengthening the zonal advection and thermocline feedbacks, as linked to a weaker annual cycle of sea surface temperature in the eastern equatorial Pacific. They prevent extreme El Niño events, reduce interannual sea surface temperature skewness in the tropical Pacific, influence the likelihood of El Niño/Southern Oscillation events in April and June and allow for more El Niño transitions to Central Pacific events. While rising greenhouse gases significantly reduce El Niño/Southern Oscillation variability via a stronger sea surface temperature annual cycle and attenuated thermocline feedback. They promote extreme El Niño events, increase SST skewness, and enlarge the likelihood of El Niño/Southern Oscillation peaking in November while inhibiting Central Pacific El Niño/Southern Oscillation events. 
    more » « less
  5. Abstract Species composition and community structure in Neotropical forests have been severely affected by increases in climate change and disturbance. Among the most conspicuous changes is the proliferation of lianas. These increases have affected not only the carbon storage capacity of forests but also tree dynamics by reducing tree growth and increasing mortality. Despite the importance of lianas in Neotropical forests, most of the studies on lianas have focused on adult stages, ignoring dynamics at the seedlings stage. Here, we asked whether observed increases in liana abundance are associated with a demographic advantage that emerges early in liana ontogeny and with decreased precipitation and increased disturbance. To test this, we compared patterns of growth and survival between liana seedlings and tree seedlings using a long‐term data set of seedling plots from a subtropical wet forest in Puerto Rico, USA. Then, we examined the effect of precipitation and land use history on these demographic variables. We found evidence for liana seedling survival advantage over trees, but no growth advantages. This survival advantage exhibited significant temporal variation linked with patterns of rainfall, as well as differences associated with land‐use history in the study area. Furthermore, we found that neighborhood density has a negative effect on liana survival and growth. Our results indicate that liana proliferation is likely related to a survival advantage that emerges in early stages and is influenced by climatic conditions and past disturbance. Predicted climatic changes in rainfall patterns, including more frequent and severe droughts, together with increases in disturbance, could have a significant effect on seedling tropical communities by favoring lianas. 
    more » « less