skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evolution of superoscillations for spinning particles
Superoscillating functions are band-limited functions that can oscillate faster than their fastest Fourier component. These functions appear in various fields of science and technology, in particular they were discovered in quantum mechanics in the context of weak values introduced by Y. Aharonov and collaborators. The evolution problem of superoscillatory functions as initial conditions for the Schrödinger equation is intensively studied nowadays and the supershift property of the solution of Schrödinger equation encodes the persistence of superoscillatory phenomenon during the evolution. In this paper, we prove that the evolution of a superoscillatory initial datum for spinning particles in a magnetic field has the supershift property. Our techniques are based on the exact propagator of spinning particles, the associated infinite order differential operators and their continuity on suitable spaces of entire functions with growth conditions.  more » « less
Award ID(s):
2054863 1800057
PAR ID:
10407416
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the American Mathematical Society, Series B
Volume:
10
Issue:
11
ISSN:
2330-1511
Page Range / eLocation ID:
129 to 143
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Springer (Ed.)
    We analyze non-perturbatively the one-dimensional Schrödinger equation describing the emission of electrons from a model metal surface by a classical oscillating electric field. Placing the metal in the half-space x 0, the Schrödinger equation of the system is i∂t ψ = − 2 1 ∂x 2 ψ + (x)(U − E x cos ωt)ψ, t > 0, x ∈ R, where (x) is the Heaviside function and U > 0 is the effective confining potential (we choose units so that m = e = = 1). The amplitude E of the external electric field and the frequency ω are arbitrary. We prove existence and uniqueness of classical solutions of the Schrödinger equation for general initial conditions ψ(x, 0) = f (x), x ∈ R. When 2the initial condition is in L the evolution is unitary and the wave function goes to zero at any fixed x as t → ∞. To show this we prove a RAGE type theorem and show that the discrete spectrum of the quasienergy operator is empty. To obtain positive electron current we consider non-L 2 initial conditions containing an incoming beam from the left. The beam is partially reflected and partially transmitted for all t > 0. For these initial conditions we show that the solution approaches in the large t limit a periodic state that satisfies an infinite set of equations formally derived, under the assumption that the solution is periodic by Faisal et al. (Phys Rev A 72:023412, 2005). Due to a number of pathological features of the Hamiltonian (among which unboundedness in the physical as well as the spatial Fourier domain) the existing methods to prove such results do not apply, and we introduce new, more general ones. The actual solution exhibits a very complex behavior, as seen both analytically and numerically. It shows a steep increase in the current as the frequency passes a threshold value ω = ωc , with ωc depending on the strength of the electric field. For small E, ωc represents the threshold in the classical photoelectric effect, as described by Einstein’s theory. 
    more » « less
  2. null (Ed.)
    Abstract We study metastable behavior in a discrete nonlinear Schrödinger equation from the viewpoint of Hamiltonian systems theory. When there are $$n<\infty $$ n < ∞ sites in this equation, we consider initial conditions in which almost all the energy is concentrated in one end of the system. We are interested in understanding how energy flows through the system, so we add a dissipation of size $$\gamma $$ γ at the opposite end of the chain, and we show that the energy decreases extremely slowly. Furthermore, the motion is localized in the phase space near a family of breather solutions for the undamped system. We give rigorous, asymptotic estimates for the rate of evolution along the family of breathers and the width of the neighborhood within which the trajectory is confined. 
    more » « less
  3. Abstract We establish local well‐posedness in the sense of Hadamard for a certain third‐order nonlinear Schrödinger equation with a multiterm linear part and a general power nonlinearity, known as higher‐order nonlinear Schrödinger equation, formulated on the half‐line . We consider the scenario of associated coefficients such that only one boundary condition is required and hence assume a general nonhomogeneous boundary datum of Dirichlet type at . Our functional framework centers around fractional Sobolev spaces with respect to the spatial variable. We treat both high regularity () and low regularity () solutions: in the former setting, the relevant nonlinearity can be handled via the Banach algebra property; in the latter setting, however, this is no longer the case and, instead, delicate Strichartz estimates must be established. This task is especially challenging in the framework of nonhomogeneous initial‐boundary value problems, as it involves proving boundary‐type Strichartz estimates that are not common in the study of Cauchy (initial value) problems. The linear analysis, which forms the core of this work, crucially relies on a weak solution formulation defined through the novel solution formulae obtained via the Fokas method (also known as the unified transform) for the associated forced linear problem. In this connection, we note that the higher‐order Schrödinger equation comes with an increased level of difficulty due to the presence of more than one spatial derivatives in the linear part of the equation. This feature manifests itself via several complications throughout the analysis, including (i) analyticity issues related to complex square roots, which require careful treatment of branch cuts and deformations of integration contours; (ii) singularities that emerge upon changes of variables in the Fourier analysis arguments; and (iii) complicated oscillatory kernels in the weak solution formula for the linear initial‐boundary value problem, which require a subtle analysis of the dispersion in terms of the regularity of the boundary data. The present work provides a first, complete treatment via the Fokas method of a nonhomogeneous initial‐boundary value problem for a partial differential equation associated with a multiterm linear differential operator. 
    more » « less
  4. We establish dispersive estimates and local decay estimates for the time evolution of non-self-adjoint matrix Schrödinger operators with threshold resonances in one space dimension. In particular, we show that the decay rates in the weighted setting are the same as in the regular case after subtracting a finite rank operator corresponding to the threshold resonances. Such matrix Schrödinger operators naturally arise from linearizing a focusing nonlinear Schrödinger equation around a solitary wave. It is known that the linearized operator for the 1D focusing cubic NLS equation exhibits a threshold resonance. We also include an observation of a favorable structure in the quadratic nonlinearity of the evolution equation for perturbations of solitary waves of the 1D focusing cubic NLS equation. 
    more » « less
  5. Abstract The inverse scattering transform for the focusing nonlinear Schrödinger equation is presented for a general class of initial conditions whose asymptotic behavior at infinity consists of counterpropagating waves. The formulation takes into account the branched nature of the two asymptotic eigenvalues of the associated scattering problem. The Jost eigenfunctions and scattering coefficients are defined explicitly as single‐valued functions on the complex plane with jump discontinuities along certain branch cuts. The analyticity properties, symmetries, discrete spectrum, asymptotics, and behavior at the branch points are discussed explicitly. The inverse problem is formulated as a matrix Riemann‐Hilbert problem with poles. Reductions to all cases previously discussed in the literature are explicitly discussed. The scattering data associated to a few special cases consisting of physically relevant Riemann problems are explicitly computed. 
    more » « less