skip to main content


Title: A Six Year, Low-resolution, Multibroadband Transit Photometry Study of HD 189733b
Abstract

Transmission spectroscopy offers an invaluable opportunity to characterize the atmospheres of exoplanets. We present new ground-based optical transmission spectra of the hot Jupiter HD 189733b, derived from nine transits observed over a six year time span (2016–2021) using near-simultaneousugribroadband observations. We achieve an average (best) precision of 435 (280) ppm by implementing an optical diffuser on the prime focus spectrograph from the 2.3 m Wyoming Infrared Observatory telescope. The data provide new measurements of the apparent planetary radius with respect to the stellar radius, the spectral index of atmospheric opacity, and the time variability of the two quantities. Our results indicate an enhanced spectral slope in the optical regime ≈2.4 times steeper than would be expected from canonical Rayleigh scattering and that is consistent with earlier measurements of a super-Rayleigh slope (SRS). While the effect of stellar activity on the transmission spectrum complicates the measurement of the spectral slope, our multiepoch data set over six years can measure and average over stellar variations, yielding a mean spectral index of −9.9 ± 4.4. The 1200 K equilibrium temperature of HD 189733b places it in a sweet spot for the formation of SRSs and is consistent with vigorously mixing hazes in the atmosphere. Additionally, we find variations in the depth of the lightcurve during two of the transits, explainable as an increase in occulted star spots during June 2021. Although the star is active, the mean level of stellar activity does not seem to vary dramatically over our six years of observations, leading us to conclude that the variability in stellar activity is modest at most.

 
more » « less
Award ID(s):
1852289
NSF-PAR ID:
10485073
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astronomical Journal
Volume:
165
Issue:
1
ISSN:
0004-6256
Format(s):
Medium: X Size: Article No. 5
Size(s):
["Article No. 5"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We use ALMA observations of CO(2–1) in 13 massive (M*≳ 1011M) poststarburst galaxies atz∼ 0.6 to constrain the molecular gas content in galaxies shortly after they quench their major star-forming episode. The poststarburst galaxies in this study are selected from the Sloan Digital Sky Survey spectroscopic samples (Data Release 14) based on their spectral shapes, as part of the Studying QUenching at Intermediate-z Galaxies: Gas, anguLarmomentum, and Evolution (SQuIGGLE) program. Early results showed that two poststarburst galaxies host large H2reservoirs despite their low inferred star formation rates (SFRs). Here we expand this analysis to a larger statistical sample of 13 galaxies. Six of the primary targets (45%) are detected, withMH2109M. Given their high stellar masses, this mass limit corresponds to an average gas fraction offH2MH2/M*7%or ∼14% using lower stellar masses estimates derived from analytic, exponentially declining star formation histories. The gas fraction correlates with theDn4000 spectral index, suggesting that the cold gas reservoirs decrease with time since burst, as found in local K+A galaxies. Star formation histories derived from flexible stellar population synthesis modeling support this empirical finding: galaxies that quenched ≲150 Myr prior to observation host detectable CO(2–1) emission, while older poststarburst galaxies are undetected. The large H2reservoirs and low SFRs in the sample imply that the quenching of star formation precedes the disappearance of the cold gas reservoirs. However, within the following 100–200 Myr, theSQuIGGLEgalaxies require the additional and efficient heating or removal of cold gas to bring their low SFRs in line with standard H2scaling relations.

     
    more » « less
  2. Abstract

    We present13CO(J= 1 → 0) observations for the EDGE-CALIFA survey, which is a mapping survey of 126 nearby galaxies at a typical spatial resolution of 1.5 kpc. Using detected12CO emission as a prior, we detect13CO in 41 galaxies via integrated line flux over the entire galaxy and in 30 galaxies via integrated line intensity in resolved synthesized beams. Incorporating our CO observations and optical IFU spectroscopy, we perform a systematic comparison between the line ratio12/13I[12CO(J=10)]/I[13CO(J=10)]and the properties of the stars and ionized gas. Higher12/13values are found in interacting galaxies compared to those in noninteracting galaxies. The global12/13slightly increases with infrared colorF60/F100but appears insensitive to other host-galaxy properties such as morphology, stellar mass, or galaxy size. We also present azimuthally averaged12/13profiles for our sample up to a galactocentric radius of 0.4r25(∼6 kpc), taking into account the13CO nondetections by spectral stacking. The radial profiles of12/13are quite flat across our sample. Within galactocentric distances of 0.2r25, the azimuthally averaged12/13increases with the star formation rate. However, Spearman rank correlation tests show the azimuthally averaged12/13does not strongly correlate with any other gas or stellar properties in general, especially beyond 0.2r25from the galaxy centers. Our findings suggest that in the complex environments in galaxy disks,12/13is not a sensitive tracer for ISM properties. Dynamical disturbances, like galaxy interactions or the presence of a bar, also have an overall impact on12/13, which further complicates the interpretations of12/13variations.

     
    more » « less
  3. Abstract

    The warm Neptune GJ 3470b transits a nearby (d= 29 pc) bright slowly rotating M1.5-dwarf star. Using spectroscopic observations during two transits with the newly commissioned NEID spectrometer on the WIYN 3.5 m Telescope at Kitt Peak Observatory, we model the classical Rossiter–McLaughlin effect, yielding a sky-projected obliquity ofλ=9812+15and avsini=0.850.33+0.27kms1. Leveraging information about the rotation period and size of the host star, our analysis yields a true obliquity ofψ=958+9, revealing that GJ 3470b is on a polar orbit. Using radial velocities from HIRES, HARPS, and the Habitable-zone Planet Finder, we show that the data are compatible with a long-term radial velocity (RV) slope ofγ̇=0.0022±0.0011ms1day1over a baseline of 12.9 yr. If the RV slope is due to acceleration from another companion in the system, we show that such a companion is capable of explaining the polar and mildly eccentric orbit of GJ 3470b using two different secular excitation models. The existence of an outer companion can be further constrained with additional RV observations, Gaia astrometry, and future high-contrast imaging observations. Lastly, we show that tidal heating from GJ 3470b’s mild eccentricity has most likely inflated the radius of GJ 3470b by a factor of ∼1.5–1.7, which could help account for its evaporating atmosphere.

     
    more » « less
  4. Abstract

    Manx objects approach the inner solar system on long-period comet (LPC) orbits with the consequent high inbound velocities, but unlike comets, Manxes display very little to no activity even near perihelion. This suggests that they may have formed in circumstances different from typical LPCs; moreover, this lack of significant activity also renders them difficult to detect at large distances. Thus, analyzing their physical properties can help constrain models of solar system formation as well as sharpen detection methods for those classified as NEOs. Here, we focus on the Manx candidate A/2018 V3 as part of a larger effort to characterize Manxes as a whole. This particular object was observed to be inactive even at its perihelion atq= 1.34 au in 2019 September. Its spectral reflectivity is consistent with typical organic-rich comet surfaces with colors ofgr=0.67±0.02,ri=0.26±0.02, andrz=0.45±0.02, corresponding to a spectral reflectivity slope of 10.6 ± 0.9%/100 nm. A least-squares fit of our constructed light curve to the observational data yields an average nucleus radius of ≈2 km assuming an albedo of 0.04. This is consistent with the value measured from NEOWISE. A surface brightness analysis for data taken 2020 July 13 indicated possible low activity (≲0.68 g s−1), but not enough to lift optically significant amounts of dust. Finally, we discuss Manxes as a constraint on solar system dynamical models as well as their implications for planetary defense.

     
    more » « less
  5. Abstract

    Manx comets are objects on long-period comet orbits that are inactive as they approach perihelion. They are of particular interest because they may help constrain solar system formation models. 2013 LU28 was discovered as an inactive asteroidal object on 2013 June 8 at a heliocentric distance of 21.8 au. Images and photometric data were obtained of 2013 LU28 from multiple telescopes from pre-discovery data in 2010 until the present. Its spectral reflectivity is consistent with typical organic-rich comet surfaces with colors ofgr= 0.97 ± 0.02,ri= 0.43 ± 0.02, andrz= 0.65 ± 0.03, corresponding to a spectral reflectivity slope of 30 ± 3%/100 nm. There is no obvious indication of dust coma in deep stacked images. We estimate the nucleus radius to be ∼55.7 ± 0.3 km assuming an albedo of 4%. This is much smaller than the 1σupper limits on the nucleus size of 79.9 km from the NEOWISE survey assuming the same albedo, since the NEOWISE survey is not very sensitive to objects this small at this distance. The heliocentric light curve suggests possible activity betweenr∼ 17 and 13 au where 2013 LU28 is brighter than expected. This is consistent with outgassing from CO or CO2. Using surface brightness profiles, we estimate an upper limit of ∼0.01 kg s−1for micron-sized dust that can be produced without us detecting it for the inactive portion of the light curve, and upper limits of ∼1 kg s−1for CO and ∼1.5 kg s−1for CO2between 20 and 14.7 au.

     
    more » « less