Abstract Sensory-guided behavior requires reliable encoding of stimulus information in neural populations, and flexible, task-specific readout. The former has been studied extensively, but the latter remains poorly understood. We introduce a theory for adaptive sensory processing based on functionally-targeted stochastic modulation. We show that responses of neurons in area V1 of monkeys performing a visual discrimination task exhibit low-dimensional, rapidly fluctuating gain modulation, which is stronger in task-informative neurons and can be used to decode from neural activity after few training trials, consistent with observed behavior. In a simulated hierarchical neural network model, such labels are learned quickly and can be used to adapt downstream readout, even after several intervening processing stages. Consistently, we find the modulatory signal estimated in V1 is also present in the activity of simultaneously recorded MT units, and is again strongest in task-informative neurons. These results support the idea that co-modulation facilitates task-adaptive hierarchical information routing.
more »
« less
Sensory and Choice Responses in MT Distinct from Motion Encoding
The macaque middle temporal (MT) area is well known for its visual motion selectivity and relevance to motion perception, but the possibility of it also reflecting higher-level cognitive functions has largely been ignored. We tested for effects of task performance distinct from sensory encoding by manipulating subjects' temporal evidence-weighting strategy during a direction discrimination task while performing electrophysiological recordings from groups of MT neurons in rhesus macaques (one male, one female). This revealed multiple components of MT responses that were, surprisingly, not interpretable as behaviorally relevant modulations of motion encoding, or as bottom-up consequences of the readout of motion direction from MT. The time-varying motion-driven responses of MT were strongly affected by our strategic manipulation—but with time courses opposite the subjects' temporal weighting strategies. Furthermore, large choice-correlated signals were represented in population activity distinct from its motion responses, with multiple phases that lagged psychophysical readout and even continued after the stimulus (but which preceded motor responses). In summary, a novel experimental manipulation of strategy allowed us to control the time course of readout to challenge the correlation between sensory responses and choices, and population-level analyses of simultaneously recorded ensembles allowed us to identify strong signals that were so distinct from direction encoding that conventional, single-neuron-centric analyses could not have revealed or properly characterized them. Together, these approaches revealed multiple cognitive contributions to MT responses that are task related but not functionally relevant to encoding or decoding of motion for psychophysical direction discrimination, providing a new perspective on the assumed status of MT as a simple sensory area. SIGNIFICANCE STATEMENTThis study extends understanding of the middle temporal (MT) area beyond its representation of visual motion. Combining multineuron recordings, population-level analyses, and controlled manipulation of task strategy, we exposed signals that depended on changes in temporal weighting strategy, but did not manifest as feedforward effects on behavior. This was demonstrated by (1) an inverse relationship between temporal dynamics of behavioral readout and sensory encoding, (2) a choice-correlated signal that always lagged the stimulus time points most correlated with decisions, and (3) a distinct choice-correlated signal after the stimulus. These findings invite re-evaluation of MT for functions outside of its established sensory role and highlight the power of experimenter-controlled changes in temporal strategy, coupled with recording and analysis approaches that transcend the single-neuron perspective.
more »
« less
- Award ID(s):
- 1734910
- PAR ID:
- 10407452
- Publisher / Repository:
- DOI PREFIX: 10.1523
- Date Published:
- Journal Name:
- The Journal of Neuroscience
- Volume:
- 43
- Issue:
- 12
- ISSN:
- 0270-6474
- Page Range / eLocation ID:
- p. 2090-2103
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Prefrontal cortex (PFC) are broadly linked to various aspects of behavior. During sensory discrimination, PFC neurons can encode a range of task related information, including the identity of sensory stimuli and related behavioral outcome. However, it remains largely unclear how different neuron subtypes and local field potential (LFP) oscillation features in the mouse PFC are modulated during sensory discrimination. To understand how excitatory and inhibitory PFC neurons are selectively engaged during sensory discrimination and how their activity relates to LFP oscillations, we used tetrode recordings to probe well-isolated individual neurons, and LFP oscillations, in mice performing a three-choice auditory discrimination task. We found that a majority of PFC neurons, 78% of the 711 recorded individual neurons, exhibited sensory discrimination related responses that are context and task dependent. Using spike waveforms, we classified these responsive neurons into putative excitatory neurons with broad waveforms or putative inhibitory neurons with narrow waveforms, and found that both neuron subtypes were transiently modulated, with individual neurons’ responses peaking throughout the entire duration of the trial. While the number of responsive excitatory neurons remain largely constant throughout the trial, an increasing fraction of inhibitory neurons were gradually recruited as the trial progressed. Further examination of the coherence between individual neurons and LFPs revealed that inhibitory neurons exhibit higher spike-field coherence with LFP oscillations than excitatory neurons during all aspects of the trial and across multiple frequency bands. Together, our results demonstrate that PFC excitatory neurons are continuously engaged during sensory discrimination, whereas PFC inhibitory neurons are increasingly recruited as the trial progresses and preferentially coordinated with LFP oscillations. These results demonstrate increasing involvement of inhibitory neurons in shaping the overall PFC dynamics toward the completion of the sensory discrimination task.more » « less
-
Two psychophysical experiments investigated perceptual differences between increases and decreases in stimulation of the short-wavelength (S) cone photoreceptors. In Experiment 1, observers’ suprathreshold perceptual scale responses to S cone stimulation were estimated using the Maximum Likelihood Difference Scaling (MLDS) procedure. In Experiment 2, observers’ pedestal discrimination thresholds were measured with a two alternative forced choice (2AFC) method. Both experiments were performed using incremental (S+) and decremental (S− ) contrasts separately. Substantial asymmetry between S+and S− was found in pedestal discrimination thresholds, but not in S+and S− perceptual scales: perceived S cone contrast was nearly linear with S cone contrast for both polarities. To reconcile perceptual scales and thresholds, a model is proposed in which the noise in the S cone pathway is assumed to be proportional to the square root of stimulus contrast. The model works well for both the perceptual scales and forced-choice discrimination, indicating that S+ and S− signals are processed in an asymmetrical way, likely due to the physiological differences between S ON and S OFF pathways.more » « less
-
null (Ed.)Abstract Neuronal spiking activity encoding working memory (WM) is robust in primate association cortices but weak or absent in early sensory cortices. This may be linked to changes in the proportion of neuronal types across areas that influence circuits’ ability to generate recurrent excitation. We recorded neuronal activity from areas middle temporal (MT), medial superior temporal (MST), and the lateral prefrontal cortex (LPFC) of monkeys performing a WM task and classified neurons as narrow (NS) and broad spiking (BS). The ratio NS/BS decreased from MT > MST > LPFC. We analyzed the Allen Institute database of ex vivo mice/human intracellular recordings to interpret our data. Our analysis suggests that NS neurons correspond to parvalbumin (PV) or somatostatin (SST) interneurons while BS neurons are pyramidal (P) cells or vasoactive intestinal peptide (VIP) interneurons. We labeled neurons in monkey tissue sections of MT/MST and LPFC and found that the proportion of PV in cortical layers 2/3 decreased, while the proportion of CR cells increased from MT/MST to LPFC. Assuming that primate CR/CB/PV cells perform similar computations as mice VIP/SST/PV cells, our results suggest that changes in the proportion of CR and PV neurons in layers 2/3 cells may favor the emergence of activity encoding WM in association areas.more » « less
-
Air turbulence ensures that in a natural environment insects tend to encounter odor stimuli in a pulsatile fashion. The frequency and duration of odor pulses varies with distance from the source, and hence successful mid-flight odor tracking requires resolution of spatiotemporal pulse dynamics. This requires both olfactory and mechanosensory input (from wind speed), a form of sensory integration observed within the antennal lobe (AL). In this work, we employ a model of the moth AL to study the effect of mechanosensory input on AL responses to pulsatile stimuli; in particular, we examine the ability of model neurons to: (1) encode the temporal length of a stimulus pulse; (2) resolve the temporal dynamics of a high frequency train of brief stimulus pulses. We find that AL glomeruli receiving olfactory input are adept at encoding the temporal length of a stimulus pulse but less effective at tracking the temporal dynamics of a pulse train, while glomeruli receiving mechanosensory input but little olfactory input can efficiently track the temporal dynamics of high frequency pulse delivery but poorly encode the duration of an individual pulse. Furthermore, we show that stronger intrinsic small-conductance calcium-dependent potassium (SK) currents tend to skew cells toward being better trackers of pulse frequency, while weaker SK currents tend to entail better encoding of the temporal length of individual pulses. We speculate a possible functional division of labor within the AL, wherein, for a particular odor, glomeruli receiving strong olfactory input exhibit prolonged spiking responses that facilitate detailed discrimination of odor features, while glomeruli receiving mechanosensory input (but little olfactory input) serve to resolve the temporal dynamics of brief, pulsatile odor encounters. Finally, we discuss how this hypothesis extends to explaining the functional significance of intraglomerular variability in observed phase II response patterns of AL neurons.more » « less