skip to main content


Title: Sensory and Choice Responses in MT Distinct from Motion Encoding

The macaque middle temporal (MT) area is well known for its visual motion selectivity and relevance to motion perception, but the possibility of it also reflecting higher-level cognitive functions has largely been ignored. We tested for effects of task performance distinct from sensory encoding by manipulating subjects' temporal evidence-weighting strategy during a direction discrimination task while performing electrophysiological recordings from groups of MT neurons in rhesus macaques (one male, one female). This revealed multiple components of MT responses that were, surprisingly, not interpretable as behaviorally relevant modulations of motion encoding, or as bottom-up consequences of the readout of motion direction from MT. The time-varying motion-driven responses of MT were strongly affected by our strategic manipulation—but with time courses opposite the subjects' temporal weighting strategies. Furthermore, large choice-correlated signals were represented in population activity distinct from its motion responses, with multiple phases that lagged psychophysical readout and even continued after the stimulus (but which preceded motor responses). In summary, a novel experimental manipulation of strategy allowed us to control the time course of readout to challenge the correlation between sensory responses and choices, and population-level analyses of simultaneously recorded ensembles allowed us to identify strong signals that were so distinct from direction encoding that conventional, single-neuron-centric analyses could not have revealed or properly characterized them. Together, these approaches revealed multiple cognitive contributions to MT responses that are task related but not functionally relevant to encoding or decoding of motion for psychophysical direction discrimination, providing a new perspective on the assumed status of MT as a simple sensory area.

SIGNIFICANCE STATEMENTThis study extends understanding of the middle temporal (MT) area beyond its representation of visual motion. Combining multineuron recordings, population-level analyses, and controlled manipulation of task strategy, we exposed signals that depended on changes in temporal weighting strategy, but did not manifest as feedforward effects on behavior. This was demonstrated by (1) an inverse relationship between temporal dynamics of behavioral readout and sensory encoding, (2) a choice-correlated signal that always lagged the stimulus time points most correlated with decisions, and (3) a distinct choice-correlated signal after the stimulus. These findings invite re-evaluation of MT for functions outside of its established sensory role and highlight the power of experimenter-controlled changes in temporal strategy, coupled with recording and analysis approaches that transcend the single-neuron perspective.

 
more » « less
Award ID(s):
1734910
NSF-PAR ID:
10407452
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.1523
Date Published:
Journal Name:
The Journal of Neuroscience
Volume:
43
Issue:
12
ISSN:
0270-6474
Page Range / eLocation ID:
p. 2090-2103
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Prefrontal cortex (PFC) are broadly linked to various aspects of behavior. During sensory discrimination, PFC neurons can encode a range of task related information, including the identity of sensory stimuli and related behavioral outcome. However, it remains largely unclear how different neuron subtypes and local field potential (LFP) oscillation features in the mouse PFC are modulated during sensory discrimination. To understand how excitatory and inhibitory PFC neurons are selectively engaged during sensory discrimination and how their activity relates to LFP oscillations, we used tetrode recordings to probe well-isolated individual neurons, and LFP oscillations, in mice performing a three-choice auditory discrimination task. We found that a majority of PFC neurons, 78% of the 711 recorded individual neurons, exhibited sensory discrimination related responses that are context and task dependent. Using spike waveforms, we classified these responsive neurons into putative excitatory neurons with broad waveforms or putative inhibitory neurons with narrow waveforms, and found that both neuron subtypes were transiently modulated, with individual neurons’ responses peaking throughout the entire duration of the trial. While the number of responsive excitatory neurons remain largely constant throughout the trial, an increasing fraction of inhibitory neurons were gradually recruited as the trial progressed. Further examination of the coherence between individual neurons and LFPs revealed that inhibitory neurons exhibit higher spike-field coherence with LFP oscillations than excitatory neurons during all aspects of the trial and across multiple frequency bands. Together, our results demonstrate that PFC excitatory neurons are continuously engaged during sensory discrimination, whereas PFC inhibitory neurons are increasingly recruited as the trial progresses and preferentially coordinated with LFP oscillations. These results demonstrate increasing involvement of inhibitory neurons in shaping the overall PFC dynamics toward the completion of the sensory discrimination task. 
    more » « less
  2. Survival relies on the ability to flexibly choose between different actions according to varying environmental circumstances. Many lines of evidence indicate that action selection involves signaling in corticostriatal circuits, including the orbitofrontal cortex (OFC) and dorsomedial striatum (DMS). While choice-specific responses have been found in individual neurons from both areas, it is unclear whether populations of OFC or DMS neurons are better at encoding an animal’s choice. To address this, we trained head-fixed mice to perform an auditory guided two-alternative choice task, which required moving a joystick forward or backward. We then used silicon microprobes to simultaneously measure the spiking activity of OFC and DMS ensembles, allowing us to directly compare population dynamics between these areas within the same animals. Consistent with previous literature, both areas contained neurons that were selective for specific stimulus-action associations. However, analysis of concurrently recorded ensemble activity revealed that the animal’s trial-by-trial behavior could be decoded more accurately from DMS dynamics. These results reveal substantial regional differences in encoding action selection, suggesting that DMS neural dynamics are more specialized than OFC at representing an animal’s choice of action. NEW & NOTEWORTHY While previous literature shows that both orbitofrontal cortex (OFC) and dorsomedial striatum (DMS) represent information relevant to selecting specific actions, few studies have directly compared neural signals between these areas. Here we compared OFC and DMS dynamics in mice performing a two-alternative choice task. We found that the animal’s choice could be decoded more accurately from DMS population activity. This work provides among the first evidence that OFC and DMS differentially represent information about an animal’s selected action. 
    more » « less
  3. Abstract

    Our brains continuously acquire sensory information and make judgments even when visual information is limited. In some circumstances, an ambiguous object can be recognized from how it moves, such as an animal hopping or a plane flying overhead. Yet it remains unclear how movement is processed by brain areas involved in visual object recognition. Here we investigate whether inferior temporal (IT) cortex, an area known for its relevance in visual form processing, has access to motion information during recognition. We developed a matching task that required monkeys to recognize moving shapes with variable levels of shape degradation. Neural recordings in area IT showed that, surprisingly, some IT neurons responded stronger to degraded shapes than clear ones. Furthermore, neurons exhibited motion sensitivity at different times during the presentation of the blurry target. Population decoding analyses showed that motion patterns could be decoded from IT neuron pseudo-populations. Contrary to previous findings, these results suggest that neurons in IT can integrate visual motion and shape information, particularly when shape information is degraded, in a way that has been previously overlooked. Our results highlight the importance of using challenging multifeature recognition tasks to understand the role of area IT in naturalistic visual object recognition.

     
    more » « less
  4. Abstract

    Primary sensory cortex has long been believed to play a straightforward role in the initial processing of sensory information. Yet, the superficial layers of cortex overall are sparsely active, even during sensory stimulation; additionally, cortical activity is influenced by other modalities, task context, reward, and behavioral state. Our study demonstrates that reinforcement learning dramatically alters representations among longitudinally imaged neurons in superficial layers of mouse primary somatosensory cortex. Learning an object detection task recruits previously unresponsive neurons, enlarging the neuronal population sensitive to touch and behavioral choice. Cortical responses decrease upon repeated stimulus presentation outside of the behavioral task. Moreover, training improves population encoding of the passage of time, and unexpected deviations in trial timing elicit even stronger responses than touches do. In conclusion, the superficial layers of sensory cortex exhibit a high degree of learning-dependent plasticity and are strongly modulated by non-sensory but behaviorally-relevant features, such as timing and surprise.

     
    more » « less
  5. For complex communication signals, it is often difficult to identify the information-bearing elements and their parameters necessary to elicit functional behavior. Consequently, it may be difficult to design stimuli that test how neurons contribute to communicative processing. For tu´ngara frogs (Physalaemus pustulosus), however, previous behavioral testing with numerous stimuli showed that a particular frequency modulated (FM) transition in the male call is required to elicit phonotaxis and vocal responses. Modeled on such behavioral experiments, we used awake in vivo recordings of single units in the midbrain to determine if their excitation was biased to behaviorally important FM parameters. Comparisons of stimulus driven action potentials revealed greatest excitation to the behaviorally important FM transition: a downward FM sweep or step that crosses ~600 Hz. Previous studies using long-duration acoustic exposure found immediate early gene expression in many midbrain neurons to be most sensitive to similar FM. However, those data could not determine if FM coding was accomplished by the population and/or individual neurons. Our data suggest both coding schemes could operate, as 1) individual neurons are more sensitive to the behaviorally significant FM transition and 2) when single unit recordings are analytically combined across cells, the combined code can produce high stimulus discrimination (FM vs. noise driven excitation), approaching that found in behavioral discrimination of call vs. noise. 
    more » « less