skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Targeted V1 comodulation supports task-adaptive sensory decisions
Abstract Sensory-guided behavior requires reliable encoding of stimulus information in neural populations, and flexible, task-specific readout. The former has been studied extensively, but the latter remains poorly understood. We introduce a theory for adaptive sensory processing based on functionally-targeted stochastic modulation. We show that responses of neurons in area V1 of monkeys performing a visual discrimination task exhibit low-dimensional, rapidly fluctuating gain modulation, which is stronger in task-informative neurons and can be used to decode from neural activity after few training trials, consistent with observed behavior. In a simulated hierarchical neural network model, such labels are learned quickly and can be used to adapt downstream readout, even after several intervening processing stages. Consistently, we find the modulatory signal estimated in V1 is also present in the activity of simultaneously recorded MT units, and is again strongest in task-informative neurons. These results support the idea that co-modulation facilitates task-adaptive hierarchical information routing.  more » « less
Award ID(s):
1922658
PAR ID:
10537574
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Communications
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sengupta, Piali (Ed.)
    Animals must integrate sensory cues with their current behavioral context to generate a suitable response. How this integration occurs is poorly understood. Previously, we developed high-throughput methods to probe neural activity in populations ofCaenorhabditis elegansand discovered that the animal’s mechanosensory processing is rapidly modulated by the animal’s locomotion. Specifically, we found that when the worm turns it suppresses its mechanosensory-evoked reversal response. Here, we report thatC.elegansuse inhibitory feedback from turning-associated neurons to provide this rapid modulation of mechanosensory processing. By performing high-throughput optogenetic perturbations triggered on behavior, we show that turning-associated neurons SAA, RIV, and/or SMB suppress mechanosensory-evoked reversals during turns. We find that activation of the gentle-touch mechanosensory neurons or of any of the interneurons AIZ, RIM, AIB, and AVE during a turn is less likely to evoke a reversal than activation during forward movement. Inhibiting neurons SAA, RIV, and SMB during a turn restores the likelihood with which mechanosensory activation evokes reversals. Separately, activation of premotor interneuron AVA evokes reversals regardless of whether the animal is turning or moving forward. We therefore propose that inhibitory signals from SAA, RIV, and/or SMB gate mechanosensory signals upstream of neuron AVA. We conclude thatC.elegansrely on inhibitory feedback from the motor circuit to modulate its response to sensory stimuli on fast timescales. This need for motor signals in sensory processing may explain the ubiquity in many organisms of motor-related neural activity patterns seen across the brain, including in sensory processing areas. 
    more » « less
  2. Abstract Success in many real-world tasks depends on our ability to dynamically track hidden states of the world. We hypothesized that neural populations estimate these states by processing sensory history through recurrent interactions which reflect the internal model of the world. To test this, we recorded brain activity in posterior parietal cortex (PPC) of monkeys navigating by optic flow to a hidden target location within a virtual environment, without explicit position cues. In addition to sequential neural dynamics and strong interneuronal interactions, we found that the hidden state - monkey’s displacement from the goal - was encoded in single neurons, and could be dynamically decoded from population activity. The decoded estimates predicted navigation performance on individual trials. Task manipulations that perturbed the world model induced substantial changes in neural interactions, and modified the neural representation of the hidden state, while representations of sensory and motor variables remained stable. The findings were recapitulated by a task-optimized recurrent neural network model, suggesting that task demands shape the neural interactions in PPC, leading them to embody a world model that consolidates information and tracks task-relevant hidden states. 
    more » « less
  3. Abstract Sensory data about most natural task-relevant variables are entangled with task-irrelevant nuisance variables. The neurons that encode these relevant signals typically constitute a nonlinear population code. Here we present a theoretical framework for quantifying how the brain uses or decodes its nonlinear information. Our theory obeys fundamental mathematical limitations on information content inherited from the sensory periphery, describing redundant codes when there are many more cortical neurons than primary sensory neurons. The theory predicts that if the brain uses its nonlinear population codes optimally, then more informative patterns should be more correlated with choices. More specifically, the theory predicts a simple, easily computed quantitative relationship between fluctuating neural activity and behavioral choices that reveals the decoding efficiency. This relationship holds for optimal feedforward networks of modest complexity, when experiments are performed under natural nuisance variation. We analyze recordings from primary visual cortex of monkeys discriminating the distribution from which oriented stimuli were drawn, and find these data are consistent with the hypothesis of near-optimal nonlinear decoding. 
    more » « less
  4. Abstract Natural behaviors occur in closed action-perception loops and are supported by dynamic and flexible beliefs abstracted away from our immediate sensory milieu. How this real-world flexibility is instantiated in neural circuits remains unknown. Here, we have male macaques navigate in a virtual environment by primarily leveraging sensory (optic flow) signals, or by more heavily relying on acquired internal models. We record single-unit spiking activity simultaneously from the dorsomedial superior temporal area (MSTd), parietal area 7a, and the dorso-lateral prefrontal cortex (dlPFC). Results show that while animals were able to maintain adaptive task-relevant beliefs regardless of sensory context, the fine-grain statistical dependencies between neurons, particularly in 7a and dlPFC, dynamically remapped with the changing computational demands. In dlPFC, but not 7a, destroying these statistical dependencies abolished the area’s ability for cross-context decoding. Lastly, correlational analyses suggested that the more unit-to-unit couplings remapped in dlPFC, and the less they did so in MSTd, the less were population codes and behavior impacted by the loss of sensory evidence. We conclude that dynamic functional connectivity between neurons in prefrontal cortex maintain a stable population code and context-invariant beliefs during naturalistic behavior. 
    more » « less
  5. null (Ed.)
    Abstract The mammalian sensory neocortex consists of hierarchically organized areas reciprocally connected via feedforward (FF) and feedback (FB) circuits. Several theories of hierarchical computation ascribe the bulk of the computational work of the cortex to looped FF-FB circuits between pairs of cortical areas. However, whether such corticocortical loops exist remains unclear. In higher mammals, individual FF-projection neurons send afferents almost exclusively to a single higher-level area. However, it is unclear whether FB-projection neurons show similar area-specificity, and whether they influence FF-projection neurons directly or indirectly. Using viral-mediated monosynaptic circuit tracing in macaque primary visual cortex (V1), we show that V1 neurons sending FF projections to area V2 receive monosynaptic FB inputs from V2, but not other V1-projecting areas. We also find monosynaptic FB-to-FB neuron contacts as a second motif of FB connectivity. Our results support the existence of FF-FB loops in primate cortex, and suggest that FB can rapidly and selectively influence the activity of incoming FF signals. 
    more » « less