skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Acclimation of Phytoplankton Fe:C Ratios Dampens the Biogeochemical Response to Varying Atmospheric Deposition of Soluble Iron
Abstract Dissolved iron (dFe) plays an important role in regulating marine productivity. In high nutrient, low chlorophyll regions (>33% of the global ocean), iron is the primary growth limiting nutrient, and elsewhere iron can regulate nitrogen fixation by diazotrophs. The link between iron availability and carbon export is strongly dependent on the phytoplankton iron quotas or cellular Fe:C ratios. This ratio varies by more than an order of magnitude in the open ocean and is positively correlated with ambient dFe concentrations in field observations. Representing Fe:C ratios within models is necessary to investigate how ocean carbon cycling will interact with perturbations to iron cycling in a changing climate. The Community Earth System Model ocean component was modified to simulate dynamic, group‐specific, phytoplankton Fe:C that varies as a function of ambient iron concentration. The simulated Fe:C ratios improve the representation of the spatial trends in the observed Fe:C ratios. The acclimation of phytoplankton Fe:C ratios dampens the biogeochemical response to varying atmospheric deposition of soluble iron, compared to a fixed Fe:C ratio. However, varying atmospheric soluble iron supply has first order impacts on global carbon and nitrogen fluxes and on nutrient limitation spatial patterns. Our results suggest that pyrogenic Fe is a significant dFe source that rivals mineral dust inputs in some regions. Changes in dust flux and iron combustion sources (anthropogenic and wildfires) will modify atmospheric Fe inputs in the future. Accounting for dynamic phytoplankton iron quotas is critical for understanding ocean biogeochemistry and projecting its response to variations in atmospheric deposition.  more » « less
Award ID(s):
2124014
PAR ID:
10407480
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
37
Issue:
4
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Phytoplankton iron contents (i.e., quotas) directly link biogeochemical cycles of iron and carbon and drive patterns of nutrient limitation, recycling, and export. Ocean biogeochemical models typically assume that iron quotas are either static or controlled by dissolved iron availability. We measured iron quotas in phytoplankton communities across nutrient gradients in the Pacific Ocean and found that quotas diverged significantly in taxon‐specific ways from laboratory‐derived predictions. Iron quotas varied 40‐fold across nutrient gradients, and nitrogen‐limitation allowed diatoms to accumulate fivefold more iron than co‐occurring flagellates even under low iron availability. Modeling indicates such “luxury” uptake is common in large regions of the low‐iron Pacific Ocean. Among diatoms, both pennate and centric genera accumulated luxury iron, but the cosmopolitan pennate genusPseudo‐nitzschiamaintained iron quotas 10‐fold higher than co‐occurring centric diatoms, likely due to enhanced iron storage. Biogeochemical models should account for taxonomic and macronutrient controls on phytoplankton iron quotas. 
    more » « less
  2. Abstract Aluminum (Al) is delivered to surface ocean waters by aeolian dust, making it a promising tracer to constrain dust deposition rates and the atmospheric supply of trace metal micronutrients. Over recent years, dissolved Al has been mapped along the GEOTRACES transects, providing unparalleled coverage of the world ocean. However, inferring atmospheric input rates from these observations is complicated by a suite of additional processes that influence the Al distribution, including reversible particle scavenging, biological uptake by diatoms, hydrothermal sources, sediment resuspension. Here we employ a data‐assimilation model of the oceanic Al cycle that explicitly accounts for these processes, allowing the atmospheric signal to be extracted. We conduct an ensemble of model optimizations that test different dust deposition distributions and consider spatial variations in Al solubility, thereby inferring the atmospheric Al supply that is most consistent with GEOTRACES observations. We find that 37.2 ± 11.0 Gmol/yr of soluble Al is added to the global ocean, dominated in the Atlantic Ocean, and that Al fractional solubility varies strongly as a function of atmospheric dust concentration. Our model also suggests that 6.1 ± 2.4 Gmol Al/yr is injected from hydrothermal vents, and that vertical Al redistribution through the water column is dominated by abiotic reversible scavenging rather than uptake by diatoms. Our results have important implications for the oceanic iron (Fe) budget: based on the soluble Fe:Al ratio of dust, we infer that aeolian Fe inputs lie between 3.82 and 9.25 Gmol/yr globally, and fall short of the biological Fe demand in most ocean regions. 
    more » « less
  3. Abstract Distinctively‐light isotopic signatures associated with Fe released from anthropogenic activity have been used to trace basin‐scale impacts. However, this approach is complicated by the way Fe cycle processes modulate oceanic dissolved Fe (dFe) signatures (δ56Fediss) post deposition. Here we include dust, wildfire, and anthropogenic aerosol Fe deposition in a global ocean biogeochemical model with active Fe isotope cycling, to quantify how anthropogenic Fe impacts surface ocean dFe and δ56Fediss. Using the North Pacific as a natural laboratory, the response of dFe, δ56Fediss, and primary productivity are spatially and seasonally variable and do not simply follow the footprint of atmospheric deposition. Instead, the effect of anthropogenic Fe is regulated by the biogeochemical regime, specifically the degree of Fe limitation and rates of primary production. Overall, we find that while δ56Fedissdoes trace anthropogenic input, the response is muted by fractionation during phytoplankton uptake, but amplified by other isotopically‐light Fe sources. 
    more » « less
  4. Abstract Observations of dissolved iron (dFe) in the subtropical North Atlantic revealed remarkable features: While the near‐surface dFe concentration is low despite receiving high dust deposition, the subsurface dFe concentration is high. We test several hypotheses that might explain this feature in an ocean biogeochemistry model with a refined Fe cycling scheme. These hypotheses invoke a stronger lithogenic scavenging rate, rapid biological uptake, and a weaker binding between Fe and a ubiquitous, refractory ligand. While the standard model overestimates the surface dFe concentration, a 10‐time stronger biological uptake run causes a slight reduction in the model surface dFe. A tenfold decrease in the binding strength of the refractory ligand, suggested by recent observations, starts reproducing the observed dFe pattern, with a potential impact for the global nutrient distribution. An extreme value for the lithogenic scavenging rate can also match the model dFe with observations, but this process is still poorly constrained. 
    more » « less
  5. Dissolved iron (dFe) is an essential micronutrient for phytoplankton, with vanishingly low oceanic dissolved concentrations (pico- to nanomoles per kg) known to limit growth—and thus influence primary productivity and carbon cycling—over much of the surface ocean. However, because of the considerable challenges associated with contamination-free sample collection and accurate analysis of such low dFe concentrations, the first reliable dFe measurements came only in the 1980s. Further, by 2003, despite several decades of research, there were only ~25 full-depth oceanic dFe profiles worldwide, with dust considered to be the main oceanic dFe source. Since 2008, facilitated by the extensive field campaign and rigorous intercalibration of the international GEOTRACES program, there has been an “explosion” in the availability of oceanic dFe data, with hundreds of profiles now available. Concurrently, there has been a paradigm shift to a view of the marine Fe cycle where multiple sources contribute, and some forms of dFe can be transported great distances through the intermediate and deep ocean. Here, we showcase the GEOTRACES dFe datasets across the different ocean basins, synthesize our current multi-source view of the oceanic Fe cycle, spotlight sediments as an important dFe source, and look to future directions for constraining oceanic dFe boundary exchange. 
    more » « less