We present a Keck/MOSFIRE restoptical composite spectrum of 16 typical gravitationally lensed starforming dwarf galaxies at 1.7 ≲
We present a stellar dynamical mass measurement of a newly detected supermassive black hole (SMBH) at the center of the fastrotating, massive elliptical galaxy NGC 2693 as part of the MASSIVE survey. We combine high signaltonoise ratio integral field spectroscopy (IFS) from the Gemini MultiObject Spectrograph with widefield data from the Mitchell Spectrograph at McDonald Observatory to extract and model stellar kinematics of NGC 2693 from the central ∼150 pc out to ∼2.5 effective radii. Observations from Hubble Space Telescope WFC3 are used to determine the stellar light distribution. We perform fully triaxial Schwarzschild orbit modeling using the latest TriOS code and a Bayesian search in 6D galaxy model parameter space to determine NGC 2693's SMBH mass (
 NSFPAR ID:
 10364978
 Publisher / Repository:
 DOI PREFIX: 10.3847
 Date Published:
 Journal Name:
 The Astrophysical Journal
 Volume:
 928
 Issue:
 2
 ISSN:
 0004637X
 Format(s):
 Medium: X Size: Article No. 178
 Size(s):
 ["Article No. 178"]
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract z ≲ 2.6 (z _{mean}= 2.30), all chosen independent of emissionline strength. These galaxies have a median stellar mass of and a median star formation rate of $\mathrm{log}{({M}_{*}/{M}_{\odot})}_{\mathrm{med}}={8.29}_{0.43}^{+0.51}$ . We measure the faint electrontemperaturesensitive [O ${\mathrm{S}\mathrm{F}\mathrm{R}}_{\mathrm{H}\alpha}^{\mathrm{m}\mathrm{e}\mathrm{d}}={2.25}_{1.26}^{+2.15}\phantom{\rule{0.25em}{0ex}}{M}_{\odot}\phantom{\rule{0.25em}{0ex}}{\mathrm{y}\mathrm{r}}^{1}$iii ]λ 4363 emission line at 2.5σ (4.1σ ) significance when considering a bootstrapped (statisticalonly) uncertainty spectrum. This yields a directmethod oxygen abundance of ( $12+\mathrm{log}{(\mathrm{O}/\mathrm{H})}_{\mathrm{direct}}={7.88}_{0.22}^{+0.25}$ ). We investigate the applicability at high ${0.15}_{0.06}^{+0.12}\phantom{\rule{0.33em}{0ex}}{Z}_{\odot}$z of locally calibrated oxygenbased strongline metallicity relations, finding that the local reference calibrations of Bian et al. best reproduce (≲0.12 dex) our composite metallicity at fixed strongline ratio. At fixedM _{*}, our composite is well represented by thez ∼ 2.3 directmethod stellar mass—gasphase metallicity relation (MZR) of Sanders et al. When comparing to predicted MZRs from the IllustrisTNG and FIRE simulations, having recalculated our stellar masses with more realistic nonparametric star formation histories , we find excellent agreement with the FIRE MZR. Our composite is consistent with no metallicity evolution, at fixed $(\mathrm{log}{({M}_{*}/{M}_{\odot})}_{\mathrm{med}}={8.92}_{0.22}^{+0.31})$M _{*}and SFR, of the locally defined fundamental metallicity relation. We measure the doublet ratio [Oii ]λ 3729/[Oii ]λ 3726 = 1.56 ± 0.32 (1.51 ± 0.12) and a corresponding electron density of ( ${n}_{e}={1}_{0}^{+215}\phantom{\rule{0.33em}{0ex}}{\mathrm{cm}}^{3}$ ) when considering the bootstrapped (statisticalonly) error spectrum. This result suggests that lowermass galaxies have lower densities than highermass galaxies at ${n}_{e}={1}_{0}^{+74}\phantom{\rule{0.33em}{0ex}}{\mathrm{cm}}^{3}$z ∼ 2. 
Abstract We investigate the stellar mass–black hole mass (
) relation with type 1 active galactic nuclei (AGNs) down to ${\mathit{\ue239}}_{*}\u2013{\mathit{\ue239}}_{\mathrm{BH}}$ , corresponding to a ≃ −21 absolute magnitude in restframe ultraviolet, at ${\mathit{\ue239}}_{\mathrm{BH}}={10}^{7\phantom{\rule{0.11em}{0ex}}}{M}_{\odot}$z = 2–2.5. Exploiting the deep and largearea spectroscopic survey of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX), we identify 66 type 1 AGNs with ranging from 10^{7}–10^{10} ${\mathit{\ue239}}_{\mathrm{BH}}$M _{⊙}that are measured with singleepoch virial method using Civ emission lines detected in the HETDEX spectra. of the host galaxies are estimated from optical to nearinfrared photometric data taken with Spitzer, the Widefield Infrared Survey Explorer, and groundbased 4–8 m class telescopes by ${\mathit{\ue239}}_{*}$CIGALE spectral energy distribution (SED) fitting. We further assess the validity of SED fitting in two cases by hostnuclear decomposition performed through surface brightness profile fitting on spatially resolved host galaxies with the James Webb Space Telescope/NIRCam CEERS data. We obtain the relation covering the unexplored lowmass ranges of ${\mathit{\ue239}}_{*}\u2013{\mathit{\ue239}}_{\mathrm{BH}}$ , and conduct forward modeling to fully account for the selection biases and observational uncertainties. The intrinsic ${\mathit{\ue239}}_{\mathrm{BH}}\phantom{\rule{0.25em}{0ex}}\sim \phantom{\rule{0.25em}{0ex}}{10}^{7}\u2013{10}^{8}\phantom{\rule{0.25em}{0ex}}{M}_{\odot}$ relation at ${\mathit{\ue239}}_{*}\u2013{\mathit{\ue239}}_{\mathrm{BH}}$z ∼ 2 has a moderate positive offset of 0.52 ± 0.14 dex from the local relation, suggestive of more efficient black hole growth at higher redshift even in the lowmass regime of . Our ${\mathit{\ue239}}_{\mathrm{BH}}\phantom{\rule{0.25em}{0ex}}\sim \phantom{\rule{0.25em}{0ex}}{10}^{7}\u2013{10}^{8}\phantom{\rule{0.25em}{0ex}}{M}_{\odot}$ relation is inconsistent with the ${\mathit{\ue239}}_{*}\u2013{\mathit{\ue239}}_{\mathrm{BH}}$ suppression at the low ${\mathit{\ue239}}_{\mathrm{BH}}$ regime predicted by recent hydrodynamic simulations at a 98% confidence level, suggesting that feedback in the lowmass systems may be weaker than those produced in hydrodynamic simulations. ${\mathit{\ue239}}_{*}$ 
Abstract A star completely destroyed in a tidal disruption event (TDE) ignites a luminous flare that is powered by the fallback of tidally stripped debris to a supermassive black hole (SMBH) of mass
M _{•}. We analyze two estimates for the peak fallback rate in a TDE, one being the “frozenin” model, which predicts a strong dependence of the time to peak fallback rate,t _{peak}, on both stellar mass and age, with 15 days ≲t _{peak}≲ 10 yr for main sequence stars with masses 0.2 ≤M _{⋆}/M _{⊙}≤ 5 andM _{•}= 10^{6}M _{⊙}. The second estimate, which postulates that the star is completely destroyed when tides dominate the maximum stellar selfgravity, predicts thatt _{peak}is very weakly dependent on stellar type, with for 0.2 ≤ ${t}_{\mathrm{peak}}=\left(23.2\pm 4.0\phantom{\rule{0.25em}{0ex}}\mathrm{days}\right){\left({M}_{\u2022}/{10}^{6}{M}_{\odot}\right)}^{1/2}$M _{⋆}/M _{⊙}≤ 5, while for a Kroupa initial mass function truncated at 1.5 ${t}_{\mathrm{peak}}\phantom{\rule{0.25em}{0ex}}=\left(29.8\pm 3.6\phantom{\rule{0.25em}{0ex}}\mathrm{days}\right){\left({M}_{\u2022}/{10}^{6}{M}_{\odot}\right)}^{1/2}$M _{⊙}. This second estimate also agrees closely with hydrodynamical simulations, while the frozenin model is discrepant by orders of magnitude. We conclude that (1) the time to peak luminosity in complete TDEs is almost exclusively determined by SMBH mass, and (2) massivestar TDEs power the largest accretion luminosities. Consequently, (a) decadeslong extragalactic outbursts cannot be powered by complete TDEs, including massivestar disruptions, and (b) the most highly superEddington TDEs are powered by the complete disruption of massive stars, which—if responsible for producing jetted TDEs—would explain the rarity of jetted TDEs and their preference for young and starforming host galaxies. 
Abstract We conduct a systematic tidal disruption event (TDE) demographics analysis using the largest sample of optically selected TDEs. A fluxlimited, spectroscopically complete sample of 33 TDEs is constructed using the Zwicky Transient Facility over 3 yr (from 2018 October to 2021 September). We infer the black hole (BH) mass (
M _{BH}) with host galaxy scaling relations, showing that the sampleM _{BH}ranges from 10^{5.1}M _{⊙}to 10^{8.2}M _{⊙}. We developed a survey efficiency corrected maximum volume method to infer the rates. The restframeg band luminosity function can be well described by a broken power law of , with $\varphi ({L}_{g})\propto {\left[{\left({L}_{g}/{L}_{\mathrm{bk}}\right)}^{0.3}+{\left({L}_{g}/{L}_{\mathrm{bk}}\right)}^{2.6}\right]}^{1}$L _{bk}= 10^{43.1}erg s^{−1}. In the BH mass regime of 10^{5.3}≲ (M _{BH}/M _{⊙}) ≲ 10^{7.3}, the TDE mass function follows , which favors a flat local BH mass function ( $\varphi ({M}_{\mathrm{BH}})\propto {M}_{\mathrm{BH}}^{0.25}$ ). We confirm the significant rate suppression at the highmass end ( ${\mathit{dn}}_{\mathrm{BH}}/d\mathrm{log}{M}_{\mathrm{BH}}\approx \mathrm{constant}$M _{BH}≳ 10^{7.5}M _{⊙}), which is consistent with theoretical predictions considering direct capture of hydrogenburning stars by the event horizon. At a host galaxy mass ofM _{gal}∼ 10^{10}M _{⊙}, the average optical TDE rate is ≈3.2 × 10^{−5}galaxy^{−1}yr^{−1}. We constrain the optical TDE rate to be [3.7, 7.4, and 1.6] × 10^{−5}galaxy^{−1}yr^{−1}in galaxies with red, green, and blue colors. 
Abstract We present a spectroscopic analysis of Eridanus IV (Eri IV) and Centaurus I (Cen I), two ultrafaint dwarf galaxies of the Milky Way. Using IMACS/Magellan spectroscopy, we identify 28 member stars of Eri IV and 34 member stars of Cen I. For Eri IV, we measure a systemic velocity of
, and velocity dispersion ${v}_{\mathrm{sys}}={31.5}_{1.2}^{+1.3}\phantom{\rule{0.33em}{0ex}}\mathrm{km}\phantom{\rule{0.25em}{0ex}}{\mathrm{s}}^{1}$ . Additionally, we measure the metallicities of 16 member stars of Eri IV. We find a metallicity of ${\sigma}_{v}={6.1}_{0.9}^{+1.2}\phantom{\rule{0.33em}{0ex}}\mathrm{km}\phantom{\rule{0.25em}{0ex}}{\mathrm{s}}^{1}$ , and resolve a dispersion of $[\mathrm{Fe}/\mathrm{H}]={2.87}_{0.07}^{+0.08}$σ _{[Fe/H]}=0.20 ± 0.09. The mean metallicity is marginally lower than all other known ultrafaint dwarf galaxies, making it one of the most metalpoor galaxies discovered thus far. Eri IV also has a somewhat unusual rightskewed metallicity distribution. For Cen I, we find a velocityv _{sys}= 44.9 ± 0.8 km s^{−1}, and velocity dispersion . We measure the metallicities of 27 member stars of Cen I, and find a mean metallicity [Fe/H] = −2.57 ± 0.08, and metallicity dispersion ${\sigma}_{v}={4.2}_{0.5}^{+0.6}\phantom{\rule{0.33em}{0ex}}\mathrm{km}\phantom{\rule{0.25em}{0ex}}{\mathrm{s}}^{1}$ . We calculate the systemic proper motion, orbit, and the astrophysical Jfactor for each system, the latter of which indicates that Eri IV is a good target for indirect dark matter detection. We also find no strong evidence for tidal stripping of Cen I or Eri IV. Overall, our measurements confirm that Eri IV and Cen I are darkmatterdominated galaxies with properties largely consistent with other known ultrafaint dwarf galaxies. The low metallicity, rightskewed metallicity distribution, and high Jfactor make Eri IV an especially interesting candidate for further followup. ${\sigma}_{[\mathrm{Fe}/\mathrm{H}]}={0.38}_{0.05}^{+0.07}$