skip to main content


This content will become publicly available on January 1, 2025

Title: Reviews and syntheses: expanding the global coverage of gross primary production and net community production measurements using Biogeochemical-Argo floats

Abstract. This paper provides an overview and demonstration of emerging float-based methods for quantifying gross primary production (GPP) and net community production (NCP) using Biogeochemical-Argo (BGC-Argo) float data. Recent publications have described GPP methods that are based on the detection of diurnal oscillations in upper-ocean oxygen or particulate organic carbon concentrations using single profilers or a composite of BGC-Argo floats. NCP methods rely on budget calculations to partition observed tracer variations into physical or biological processes occurring over timescales greater than 1 d. Presently, multi-year NCP time series are feasible at near-weekly resolution, using consecutive or simultaneous float deployments at local scales. Results, however, are sensitive to the choice of tracer used in the budget calculations and uncertainties in the budget parameterizations employed across different NCP approaches. Decadal, basin-wide GPP calculations are currently achievable using data compiled from the entire BGC-Argo array, but finer spatial and temporal resolution requires more float deployments to construct diurnal tracer curves. A projected, global BGC-Argo array of 1000 floats should be sufficient to attain annual GPP estimates at 10∘ latitudinal resolution if floats profile at off-integer intervals (e.g., 5.2 or 10.2 d). Addressing the current limitations of float-based methods should enable enhanced spatial and temporal coverage of marine GPP and NCP measurements, facilitating global-scale determinations of the carbon export potential, training of satellite primary production algorithms, and evaluations of biogeochemical numerical models. This paper aims to facilitate broader uptake of float GPP and NCP methods, as singular or combined tools, by the oceanographic community and to promote their continued development.

 
more » « less
Award ID(s):
2110258 1946578
NSF-PAR ID:
10407638
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
EGU
Date Published:
Journal Name:
Biogeosciences
Volume:
21
Issue:
1
ISSN:
1726-4189
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Argo array provides nearly 4000 temperature and salinity profiles of the top 2000 m of the ocean every 10 days. Still, Argo floats will never be able to measure the ocean at all times, everywhere. Optimized Argo float distributions should match the spatial and temporal variability of the many societally important ocean features that they observe. Determining these distributions is challenging because float advection is difficult to predict. Using no external models, transition matrices based on existing Argo trajectories provide statistical inferences about Argo float motion. We use the 24 years of Argo locations to construct an optimal transition matrix that minimizes estimation bias and uncertainty. The optimal array is determined to have a 2° × 2° spatial resolution with a 90-day time step. We then use the transition matrix to predict the probability of future float locations of the core Argo array, the Global Biogeochemical Array, and the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) array. A comparison of transition matrices derived from floats using Argos system and Iridium communication methods shows the impact of surface displacements, which is most apparent near the equator. Additionally, we demonstrate the utility of transition matrices for validating models by comparing the matrix derived from Argo floats with that derived from a particle release experiment in the Southern Ocean State Estimate (SOSE).

     
    more » « less
  2. Abstract

    Net community production (NCP) was estimated from nitrate profiles measured via biogeochemical Argo floats drifting in the Argentine Basin. Two criteria were tested for defining hydrographic fronts used to separate the study area into five zones: potential density anomaly at 450 m and potential temperature at 100 m. The latter definition was preferred as it minimized overlapping among zones. Float profiles within each zone were used to construct monthly median profiles of nitrate. Monthly nitrate inventories were calculated for each zone by integrating the median profiles between the surface and a depth of 100 or 200 m. Three methods were utilized to estimate NCP from the nitrate drawdown. The resulting mean NCP estimates indicated a decline in NCP from 3 to 4 mol C m−2 yr−1south of ∼40°S to ≤1 mol C m−2 yr−1north of ∼40°S. The monthly median profiles suggested 20%–100% of drawdown occurred by the end of December; however, chlorophyll fluorescence indicated phytoplankton activity persisted through austral summer. We speculate that primary production during these summer months was supported by regenerated nitrogen sources (not nitrate), despite replete concentrations, likely due to the relative scarcity of bioavailable iron known to persist in the region. While a northward advective flux of nitrate was strongly suggested by meridional nitrate gradients over the upper 0–300 m, vertical mixing was apparently necessary to stimulate new production, indicating both processes are important for NCP in the Argentine Basin. This work highlights the potential for floats in studying biogeochemical cycles in hydrographically complex regions.

     
    more » « less
  3. Abstract

    The core Argo array has operated with the design goal of uniform spatial distribution of 3° in latitude and longitude. Recent studies have acknowledged that spatial and temporal scales of variability in some parts of the ocean are not resolved by 3° sampling and have recommended increased core Argo density in the equatorial region, boundary currents, and marginal seas with an integrated vision of other Argo variants. Biogeochemical (BGC) Argo floats currently observe the ocean from a collection of pilot arrays, but recently funded proposals will transition these pilot arrays to a global array. The current BGC Argo implementation plan recommends uniform spatial distribution of BGC Argo floats. For the first time, we estimate the effectiveness of the existing BGC Argo array to resolve the anomaly from the mean using a subset of modeled, full-depth BGC fields. We also study the effectiveness of uniformly distributed BGC Argo arrays with varying float densities at observing the ocean. Then, using previous Argo trajectories, we estimate the Argo array’s future distribution and quantify how well it observes the ocean. Finally, using a novel technique for sequentially identifying the best deployment locations, we suggest the optimal array distribution for BGC Argo floats to minimize objective mapping uncertainty in a subset of BGC fields and to best constrain BGC temporal variability.

     
    more » « less
  4. Abstract

    Mixed‐layer dynamics exert a first order control on nutrient and light availability for phytoplankton. In this study, we examine the influence of mixed‐layer dynamics on net community production (NCP) in the Southern Ocean on intra‐seasonal, seasonal, interannual, and decadal timescales, using biogeochemical Argo floats and satellite‐derived NCP estimates during the period from 1997 to 2020. On intraseasonal timescales, the shoaling of the mixed layer is more likely to enhance NCP in austral spring and winter, suggesting an alleviation of light limitation. As expected, NCP generally increases with light availability on seasonal timescales. On interannual timescales, NCP is correlated with mixed layer depth (MLD) and mixed‐layer‐averaged photosynthetically active radiation (PAR) in austral spring and winter, especially in regions with deeper mixed layers. Though recent studies have argued that winter MLD controls the subsequent growing season's iron and light availability, the limited number of Argo float observations contemporaneous with our satellite observations do not show a significant correlation between NCP and the previous‐winter's MLD on interannual timescales. Over the 1997–2020 period, we observe regional trends in NCP (e.g., increasing around S. America), but no trend for the entire Southern Ocean. Overall, our results show that the dependence of NCP on MLD is a complex function of timescales.

     
    more » « less
  5. The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project has deployed 194 profiling floats equipped with biogeochemical (BGC) sensors, making it one of the largest contributors to global BGC-Argo. Post-deployment quality control (QC) of float-based oxygen, nitrate, and pH data is a crucial step in the processing and dissemination of such data, as in situ chemical sensors remain in early stages of development. In situ calibration of chemical sensors on profiling floats using atmospheric reanalysis and empirical algorithms can bring accuracy to within 3 μmol O 2 kg –1 , 0.5 μmol NO 3 – kg –1 , and 0.007 pH units. Routine QC efforts utilizing these methods can be conducted manually through visual inspection of data to assess sensor drifts and offsets, but more automated processes are preferred to support the growing number of BGC floats and reduce subjectivity among delayed-mode operators. Here we present a methodology and accompanying software designed to easily visualize float data against select reference datasets and assess QC adjustments within a quantitative framework. The software is intended for global use and has been used successfully in the post-deployment calibration and QC of over 250 BGC floats, including all floats within the SOCCOM array. Results from validation of the proposed methodology are also presented which help to verify the quality of the data adjustments through time. 
    more » « less