Water electrolysis using renewable energy inputs is being actively pursued as a green route for hydrogen production. However, it is limited by the high energy consumption due to the sluggish anodic oxygen evolution reaction (OER) and safety issues associated with H2 and O2 mixing. Here, we replaced OER with an electrocatalytic oxidative dehydrogenation (EOD) of aldehydes for bipolar H2 production and achieved industrial-level current densities at cell voltages much lower than during water electrolysis. Experimental and computational studies suggest a reasonable barrier for C-H dissociation on Cu surfaces, mainly through a diol intermediate, with a potential-dependent competition with the solution-phase Cannizzaro reaction. The kinetics of EOD reaction was further enhanced by a porous CuAg catalyst prepared from a galvanic replacement method. Through Ag incorporation and its modification of the Cu surface, the geometric current density and electrocatalyst durability were significantly improved. Finally, we engineered a bipolar H2 production system in membrane-electrode assembly-based flow cells to facilitate mass transport, achieving a maximum current density of 248 and 390 mA cm−2 at cell voltages of 0.4 V and 0.6 V, respectively. The faradaic efficiency of H2 from both cathode and anode reactions both attained ~100%. Taking advantage of the bipolar H2 production without the issues associated with H2/O2 mixing, an inexpensive, easy-to-manufacture dialysis porous membrane was demonstrated to substitute the costly anion exchange membrane, achieving an energy-efficient and cost-effective process in a simple reactor for H2 production. The estimated H2 price of $2.51/kg from an initial technoeconomic assessment is competitive with US DoE’s “Green H2” targets.
more »
« less
Dual hydrogen production from electrocatalytic water reduction coupled with formaldehyde oxidation via a copper-silver electrocatalyst
Abstract The broad employment of water electrolysis for hydrogen (H 2 ) production is restricted by its large voltage requirement and low energy conversion efficiency because of the sluggish oxygen evolution reaction (OER). Herein, we report a strategy to replace OER with a thermodynamically more favorable reaction, the partial oxidation of formaldehyde to formate under alkaline conditions, using a Cu 3 Ag 7 electrocatalyst. Such a strategy not only produces more valuable anodic product than O 2 but also releases H 2 at the anode with a small voltage input. Density functional theory studies indicate the H 2 C(OH)O intermediate from formaldehyde hydration can be better stabilized on Cu 3 Ag 7 than on Cu or Ag, leading to a lower C-H cleavage barrier. A two-electrode electrolyzer employing an electrocatalyst of Cu 3 Ag 7 (+)||Ni 3 N/Ni(–) can produce H 2 at both anode and cathode simultaneously with an apparent 200% Faradaic efficiency, reaching a current density of 500 mA/cm 2 with a cell voltage of only 0.60 V.
more »
« less
- PAR ID:
- 10407651
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The formation and reactivities of [Cu–O–M] 2+ species (M = Ti–Cu, Zr–Mo and Ru–Ag) in metal-exchanged zeolites, as well as stabilities of these species towards autoreduction by O 2 elimination are investigated with density functional theory. These species were investigated in zeolite mordenite in search of insights into active site formation mechanisms, the relationship between stability and reactivity as well as discovery of heterometallic species useful for isothermal methane-to-methanol conversion (MMC). Several [Cu–O–M] 2+ species (M = Ti–Cr and Zr–Mo) are substantially more stable than [Cu 2 O] 2+ . Other [Cu–O–M] 2+ species, (M = Mn–Ni and Ru–Ag) have similar formation energies to [Cu 2 O] 2+ , to within ±10 kcal mol −1 . Interestingly, only [Cu–O–Ag] 2+ is more active for methane activation than [Cu 2 O] 2+ . [Cu–O–Ag] 2+ is however more susceptible to O 2 elimination. By considering the formation energies, autoreduction, cost and activity towards the methane C–H bond, we can only conclude that [Cu 2 O] 2+ is best suited for MMC. Formation of [Cu 2 O] 2+ is initiated by proton transfer from aquo ligands to the framework and proceeds mostly via dehydration steps. Its μ-oxo bridge is formed via water-assisted condensation of two hydroxo groups. To evaluate the relationship between [Cu 2 O] 2+ and other active sites, we also examined the formation energies of other species. The formation energies follow the trend: isolated [Cu–OH] + < paired [Cu–OH] + < [Cu 2 O] 2+ < [Cu 3 O 3 ] 2+ . Inclusion of Gibbs free-energy corrections indicates activation temperatures of 257, 307 and 327 and 331 °C for isolated [Cu–OH] + , paired [Cu–OH] + , [Cu 2 O] 2+ and [Cu 3 O 3 ] 2+ , respectively. The provocative nature of the lower-than-expected activation temperature for isolated [Cu–OH] + species is discussed.more » « less
-
Abstract Aldehyde‐assisted water electrolysis offers an attractive pathway for energy‐saving bipolar hydrogen production with combined faradaic efficiency (FE) of 200% while converting formaldehyde into value‐added formate. Herein we report the design and synthesis of noble metal‐free Cu6Sn5alloy as a highly effective electrocatalyst for formaldehyde electro‐oxidative dehydrogenation, demonstrating a geometric current density of 915 ± 46 mA cm−2at 0.4 V versus reversible hydrogen electrode, outperforming many noble metal electrocatalysts reported previously. The formaldehyde‐assisted water electrolyzer delivers 100 mA cm−2at a low cell voltage of 0.124 V, and a current density of 486 ± 20 mA cm−2at a cell voltage of 0.6 V without any iR compensation and exhibits nearly 200% faradaic efficiency for bipolar hydrogen production at 100 mA cm−2in 88 h long‐term operation. Density functional theory calculations further confirm the notably lowered barriers for dehydrogenation and Tafel steps on the Cu₆Sn₅ surface compared to Cu, underscoring its potential as a highly active catalyst.more » « less
-
null (Ed.)Electrocatalytic upgrading of biomass-derived feedstocks driven by renewable electricity offers a greener way to reduce the global carbon footprint associated with the production of value-added chemicals. In this respect, a key strategy is the electrocatalytic hydrogenation (ECH) reaction, which is typically paired with the anodic oxygen evolution reaction (OER) with sluggish kinetics, producing O 2 with little value. Here we prepared an oxide-derived Ag (OD-Ag) electrode with high activity and up to 98.2% selectivity for the ECH of 5-(hydroxymethyl)furfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF), and such efficient conversion was achieved in a three-electrode flow cell. The excellent BHMF selectivity was maintained over a broad potential range with long-term operational stability. We then considered the oxidation of HMF to 2,5-furandicarboxylic acid (FDCA) and hydrogen (to water) as more efficient and productive alternatives to the OER. In HMF-to-BHMF paired with 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-mediated HMF-to-FDCA conversion, a markedly reduced cell voltage from ∼7.5 V to ∼2.0 V was observed by transferring the electrolysis from the H-type cell to the flow cell, corresponding to more than four-fold increase in energy efficiency in operation at 10 mA. A combined faradaic efficiency of 163% was obtained for BHMF and FDCA. Alternatively, the anodic hydrogen oxidation reaction on platinum further reduced the cell voltage to only ∼0.85 V at 10 mA. These paired processes show the potential for integration of renewable electricity and carbon for green and economically feasible distributed chemical manufacturing.more » « less
-
null (Ed.)To directly use a CO 2 –CH 4 gas mixture for power and CO co-production by proton-conducting solid oxide fuel cells (H-SOFCs), a layer of in situ reduced La 0.6 Sr 0.2 Cr 0.85 Ni 0.15 O 3−δ (LSCrN@Ni) is fabricated on a Ni–BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3−δ (BZCYYb) anode-supported H-SOFC (H-DASC) for on-cell CO 2 dry reforming of CH 4 (DRC). For demonstrating the effectiveness of LSCrN@Ni, a cell without adding the LSCrN@Ni catalyst (H-CASC) is also studied comparatively. Fueled with H 2 , both H-CASC and H-DASC show similar stable performance with a maximum power density ranging from 0.360 to 0.816 W cm −2 at temperatures between 550 and 700 °C. When CO 2 –CH 4 is used as the fuel, the performance and stability of H-CASC decreases considerably with a maximum power density of 0.287 W cm −2 at 700 °C and a sharp drop in cell voltage from the initial 0.49 to 0.10 V within 20 h at 0.6 A cm −2 . In contrast, H-DASC demonstrates a maximum power density of 0.605 W cm −2 and a stable cell voltage above 0.65 V for 65 h. This is attributed to highly efficient on-cell DRC by LSCrN@Ni.more » « less
An official website of the United States government

