skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optical trapping and manipulation for single-particle spectroscopy and microscopy
Optical tweezers can control the position and orientation of individual colloidal particles in solution. Such control is often desirable but challenging for single-particle spectroscopy and microscopy, especially at the nanoscale. Functional nanoparticles that are optically trapped and manipulated in a three-dimensional (3D) space can serve as freestanding nanoprobes, which provide unique prospects for sensing and mapping the surrounding environment of the nanoparticles and studying their interactions with biological systems. In this perspective, we will first describe the optical forces underlying the optical trapping and manipulation of microscopic particles, then review the combinations and applications of different spectroscopy and microscopy techniques with optical tweezers. Finally, we will discuss the challenges of performing spectroscopy and microscopy on single nanoparticles with optical tweezers, the possible routes to address these challenges, and the new opportunities that will arise.  more » « less
Award ID(s):
2131079
PAR ID:
10407714
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
157
Issue:
5
ISSN:
0021-9606
Page Range / eLocation ID:
Article No. 050901
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Optical levitation of dielectric particles in vacuum is a powerful technique for precision measurements, testing fundamental physics, and quantum information science. Conventional optical tweezers require bulky optical components for trapping and detection. Here, we design and fabricate an ultrathin dielectric metalens with a high numerical aperture of 0.88 at 1064 nm in vacuum. It consists of 500-nm-thick silicon nano-antennas, which are compatible with an ultrahigh vacuum. We demonstrate optical levitation of nanoparticles in vacuum with a single metalens. The trapping frequency can be tuned by changing the laser power and polarization. We also transfer a levitated nanoparticle between two separated optical tweezers. Optical levitation with an ultrathin metalens in vacuum provides opportunities for a wide range of applications including on-chip sensing. Such metalenses will also be useful for trapping ultracold atoms and molecules. 
    more » « less
  2. Optical tweezers offer revolutionary opportunities for both fundamental and applied research in materials science, biology, and medical engineering. However, the requirement of a strongly focused and high-intensity laser beam results in potential photon-induced and thermal damages to target objects, including nanoparticles, cells, and biomolecules. Here, we report a new type of light-based tweezers, termed opto-refrigerative tweezers, which exploit solid-state optical refrigeration and thermophoresis to trap particles and molecules at the laser-generated cold region. While laser refrigeration can avoid photothermal heating, the use of a weakly focused laser beam can further reduce the photodamages to the target object. This novel and noninvasive optical tweezing technique will bring new possibilities in the optical control of nanomaterials and biomolecules for essential applications in nanotechnology, photonics, and life science. 
    more » « less
  3. The rapid advancement of nanotweezers for wireless manipulation of artificial micro‐ and nanoparticles has unlocked unprecedented possibilities in biomedicine. This review delves into optical, electric, and magnetic tweezers, emphasizing their roles in controlling single particles with micro/nanoscale features as miniaturized tools. Instead of providing a comprehensive review, this work highlights a select number of representative historical and contemporary examples of each type of tweezer, covering their rudimental working mechanisms, experimental setups, performance characteristics, and niche biomedical applications. Particularly, the focus lies in providing a quantitative comparison of the performances in spatial precision and degrees of freedom in controlling single particles, along with associated challenges and prospects. 
    more » « less
  4. Tweezers-based nanorobots, optical tweezers in particular, are renowned for their exceptional precision, and among their biomedical applications are cellular manipulation, unzipping DNAs, and elongating polypeptide chains. This thesis introduces a series of Lyapunov-based feedback control frameworks that address both stability and controlled instability for biological manipulation, applied within the context of optical tweezers. At the core of this work are novel controllers that stabilize or destabilize specific molecular configurations, enabling fine manipulation of particles like polystyrene beads and tethered polymers under focused laser beams. Chapter 1 covers the foundational principles and surveys existing literature on the modeling and control of optical tweezers, emphasizing gaps in the stability and instability control of molecular systems. Chapter 2 presents a robust Control Lyapunov Function (CLF) approach, designed to stabilize spherical particles under optical trapping. By formulating a smooth, norm-bounded feedback controller, we achieve lateral stabilization despite external disturbances, using a real-time, static nonlinear programming (NLP) solution. Simulations verify the effectiveness of this CLF framework, even with significant initial displacements from the laser focus and under thermal forces modeled as a white Gaussian noise. Chapter 3 addresses controlled instability through a Control Chetaev Function (CCF) framework, specifically targeting protein unfolding applications. Linearization with respect to the control input facilitates the application of destabilizing universal controls for affine- in-control system dynamics. The resulting CCF-based norm-bounded feedback controller induces system instability by laterally extending the trapped DNA handle, thereby increasing the molecular extension and providing insights into protein denaturation and unfolding pathways. This controller is robust to stochastic thermal forces and optimized for real-time computational efficiency. These Lyapunov and Chetaev-based control designs collectively expand the capabilities of optical tweezers, advancing single-molecule manipulation under both stable and unstable conditions. These findings advance precision nanomanipulation, opening new avenues for exploring the molecular mechanics of protein unfolding and DNA elasticity. 
    more » « less
  5. Abstract Opto-thermoelectric tweezers present a new paradigm for optical trapping and manipulation of particles using low-power and simple optics. New real-life applications of opto-thermoelectric tweezers in areas such as biophysics, microfluidics, and nanomanufacturing will require them to have large-scale and high-throughput manipulation capabilities in complex environments. Here, we present opto-thermoelectric speckle tweezers, which use speckle field consisting of many randomly distributed thermal hotspots that arise from an optical speckle pattern to trap multiple particles over large areas. By further integrating the speckle tweezers with a microfluidic system, we experimentally demonstrate their application for size-based nanoparticle filtration. With their low-power operation, simplicity, and versatility, opto-thermoelectric speckle tweezers will broaden the applications of optical manipulation techniques. 
    more » « less