skip to main content


Title: Investigation of the two-cut phase region in the complex cubic ensemble of random matrices

We investigate the phase diagram of the complex cubic unitary ensemble of random matrices with the potential [Formula: see text], where t is a complex parameter. As proven in our previous paper [Bleher et al., J. Stat. Phys. 166, 784–827 (2017)], the whole phase space of the model, [Formula: see text], is partitioned into two phase regions, [Formula: see text] and [Formula: see text], such that in [Formula: see text] the equilibrium measure is supported by one Jordan arc (cut) and in [Formula: see text] by two cuts. The regions [Formula: see text] and [Formula: see text] are separated by critical curves, which can be calculated in terms of critical trajectories of an auxiliary quadratic differential. In Bleher et al. [J. Stat. Phys. 166, 784–827 (2017)], the one-cut phase region was investigated in detail. In the present paper, we investigate the two-cut region. We prove that in the two-cut region, the endpoints of the cuts are analytic functions of the real and imaginary parts of the parameter t, but not of the parameter t itself (so that the Cauchy–Riemann equations are violated for the endpoints). We also obtain the semiclassical asymptotics of the orthogonal polynomials associated with the ensemble of random matrices and their recurrence coefficients. The proofs are based on the Riemann–Hilbert approach to semiclassical asymptotics of the orthogonal polynomials and the theory of S-curves and quadratic differentials.

 
more » « less
NSF-PAR ID:
10407716
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Mathematical Physics
Volume:
63
Issue:
6
ISSN:
0022-2488
Page Range / eLocation ID:
Article No. 063303
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We use the Riemann–Hilbert approach, together with string and Toda equations, to study the topological expansion in the quartic random matrix model. The coefficients of the topological expansion are generating functions for the numbers of 4‐valent connected graphs withjvertices on a compact Riemann surface of genusg. We explicitly evaluate these numbers for Riemann surfaces of genus 0,1,2, and 3. Also, for a Riemann surface of an arbitrary genusg, we calculate the leading term in the asymptotics of as the number of vertices tends to infinity. Using the theory of quadratic differentials, we characterize the critical contours in the complex parameter plane where phase transitions in the quartic model take place, thereby proving a result of David. These phase transitions are of the following four types: (a) one‐cut to two‐cut through the splitting of the cut at the origin, (b) two‐cut to three‐cut through the birth of a new cut at the origin, (c) one‐cut to three‐cut through the splitting of the cut at two symmetric points, and (d) one‐cut to three‐cut through the birth of two symmetric cuts.

     
    more » « less
  2. The density matrix formalism is a fundamental tool in studying various problems in quantum information processing. In the space of density matrices, the most well-known measures are the Hilbert–Schmidt and Bures–Hall ensembles. In this work, the averages of quantum purity and von Neumann entropy for an ensemble that interpolates between these two major ensembles are explicitly calculated for finite-dimensional systems. The proposed interpolating ensemble is a specialization of the [Formula: see text]-deformed Cauchy–Laguerre two-matrix model and new results for this latter ensemble are given in full generality, including the recurrence relations satisfied by their associated bi-orthogonal polynomials when [Formula: see text] assumes positive integer values. 
    more » « less
  3. We investigate the rheological behavior of athermal particle suspensions using experiments and theory. A generalized version of the homogenization estimates of Ponte Castañeda and Willis [J. Mech. Phys. Solids, 43(12), 1919–1951 (1995)] is presented for the effective viscosity of athermal suspensions accounting for additional microstructural features (e.g., polydispersity) via an empirical parameter, [Formula: see text]. For the case of identically sized spheres dispersed with statistical isotropy in a Newtonian fluid, the parameter [Formula: see text] is estimated from the results of Batchelor and Green [J. Fluid Mech. 56(2), 375–400 (1972)] for the Huggins coefficient. Predictions for the macroscopic viscosity are found to be in good agreement with measurements for monodisperse polymethyl methacrylate (PMMA) spheres in glycerol, as well as for the empirical Krieger–Dougherty equation for the shear viscosity. The proposed estimates have the added benefit that they can also be used to get information on the statistics of the stress and strain-rate fields in the fluid and particle phases. In addition, results for the effective shear viscosity are used in combination with the linear comparison method of Ponte Castañeda [J. Mech. Phys. Solids 39(1), 45–71 (1991)] to generate the corresponding estimates for the effective macroscopic behavior and field statistics of particle suspensions in (viscoplastic) yield stress fluids. Good agreement is also found between the theoretical estimates and experimental results for the effective yield and flow stress of suspensions with monodisperse PMMA spheres in Carbopol. Finally, it is argued that the results for the phase averages and fluctuations of the stress and strain-rate fields can be used to provide a physical interpretation for the parameter [Formula: see text] in terms of the polydispersity of the suspension and its implications for the percolation threshold.

     
    more » « less
  4. We show that universality limits and other bounds imply pointwise asymptotics for orthonormal polynomials at the endpoints of the interval of orthonormality. As a consequence, we show that if μ is a regular measure supported on [−1, 1], and in a neighborhood of 1, μ is absolutely continuous, while for some α > −1, μ (t) = h (t)(1 − t) α, where h (t) → 1 as t → 1−, then the corresponding orthonormal polynomials {pn} satisfy the asymptotic limn→∞pn1 − z22n2pn (1) = J∗α (z)J∗α (0) uniformly in compact subsets of the plane. Here J∗α (z) = Jα (z) /zα is the normalized Bessel function of order α. These are by far the most general conditions for such endpoint asymptotics 
    more » « less
  5. The D 5 Π–X 5 Δ (0,0) band of vanadium hydride at 654 nm has been recorded by laser excitation spectroscopy and represents the first analyzed spectrum of VH in the gas phase. The molecules were generated using a hollow cathode discharge source, with laser-induced fluorescence detected via the D 5 Π–A 5 Π (0,0) transition. All five main (ΔΩ = ΔΛ) subbands were observed as well as several satellite ones, which together create a rather complex and overlapped spectrum covering the region 15 180–15 500 cm −1 . The D 5 Π state displays the effects of three strong local perturbations, which are likely caused by interactions with high vibrational levels of the B 5 Σ − and c 3 Σ − states, identified in a previous multiconfigurational self-consistent field study by Koseki et al. [J. Phys. Chem. A 108, 4707 (2004)]. Molecular constants describing the X 5 Δ, A 5 Π, and D 5 Π states were determined in three separate least-squares fits using effective Hamiltonians written in a Hund’s case (a) basis. The fine structure of the ground state is found to be consistent with its assignment as a σπ 2 δ, 5 Δ electronic state. The fitted values of its first-order spin–orbit and rotational constants in the ground state are [Formula: see text] and B = 5.7579(13) cm −1 , the latter of which yields a bond length of [Formula: see text] Å. This experimental value is in good agreement with previous computational studies of the molecule and fits well within the overall trend of decreasing bond length across the series of 3d transition metal monohydrides. 
    more » « less