skip to main content


Title: A homogenization model for the rheology and local field statistics of suspensions of particles in yield stress fluids

We investigate the rheological behavior of athermal particle suspensions using experiments and theory. A generalized version of the homogenization estimates of Ponte Castañeda and Willis [J. Mech. Phys. Solids, 43(12), 1919–1951 (1995)] is presented for the effective viscosity of athermal suspensions accounting for additional microstructural features (e.g., polydispersity) via an empirical parameter, [Formula: see text]. For the case of identically sized spheres dispersed with statistical isotropy in a Newtonian fluid, the parameter [Formula: see text] is estimated from the results of Batchelor and Green [J. Fluid Mech. 56(2), 375–400 (1972)] for the Huggins coefficient. Predictions for the macroscopic viscosity are found to be in good agreement with measurements for monodisperse polymethyl methacrylate (PMMA) spheres in glycerol, as well as for the empirical Krieger–Dougherty equation for the shear viscosity. The proposed estimates have the added benefit that they can also be used to get information on the statistics of the stress and strain-rate fields in the fluid and particle phases. In addition, results for the effective shear viscosity are used in combination with the linear comparison method of Ponte Castañeda [J. Mech. Phys. Solids 39(1), 45–71 (1991)] to generate the corresponding estimates for the effective macroscopic behavior and field statistics of particle suspensions in (viscoplastic) yield stress fluids. Good agreement is also found between the theoretical estimates and experimental results for the effective yield and flow stress of suspensions with monodisperse PMMA spheres in Carbopol. Finally, it is argued that the results for the phase averages and fluctuations of the stress and strain-rate fields can be used to provide a physical interpretation for the parameter [Formula: see text] in terms of the polydispersity of the suspension and its implications for the percolation threshold.

 
more » « less
Award ID(s):
1920156
NSF-PAR ID:
10364481
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Society of Rheology
Date Published:
Journal Name:
Journal of Rheology
Volume:
66
Issue:
3
ISSN:
0148-6055
Page Range / eLocation ID:
p. 535-549
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Discrete-particle simulations of bidisperse shear thickening suspensions are reported. The work considers two packing parameters, the large-to-small particle radius ratio ranging from [Formula: see text] (nearly monodisperse) to [Formula: see text], and the large particle fraction of the total solid loading with values [Formula: see text], 0.5, and 0.85. Particle-scale simulations are performed over a broad range of shear stresses using a simulation model for spherical particles accounting for short-range lubrication forces, frictional interaction, and repulsion between particles. The variation of rheological properties and the maximum packing fraction [Formula: see text] with shear stress [Formula: see text] are reported. At a fixed volume fraction [Formula: see text], bidispersity decreases the suspension relative viscosity [Formula: see text], where [Formula: see text] is the suspension viscosity and [Formula: see text] is the suspending fluid viscosity, over the entire range of shear stresses studied. However, under low shear stress conditions, the suspension exhibits an unusual rheological behavior: the minimum viscosity does not occur as expected at [Formula: see text], but instead decreases with further increase of [Formula: see text] to [Formula: see text]. The second normal stress difference [Formula: see text] acts similarly. This behavior is caused by particles ordering into a layered structure, as is also reflected by the zero slope with respect to time of the mean-square displacement in the velocity gradient direction. The relative viscosity [Formula: see text] of bidisperse rate-dependent suspensions can be predicted by a power law linking it to [Formula: see text], [Formula: see text] in both low and high shear stress regimes. The agreement between the power law and experimental data from literature demonstrates that the model captures well the effect of particle size distribution, showing that viscosity roughly collapses onto a single master curve when plotted against the reduced volume fraction [Formula: see text]. 
    more » « less
  2. Monodisperse suspensions of Brownian colloidal spheres crystallize at high densities, and ordering under shear has been observed at densities below the crystallization threshold. We perform large-scale simulations of a model suspension containing over [Formula: see text] particles to quantitatively study the ordering under shear and to investigate its link to the rheological properties of the suspension. We find that at high rates, for [Formula: see text], the shear flow induces an ordering transition that significantly decreases the measured viscosity. This ordering is analyzed in terms of the development of layering and planar order, and we determine that particles are packed into hexagonal crystal layers (with numerous defects) that slide past each other. By computing local [Formula: see text] and [Formula: see text] order parameters, we determine that the defects correspond to chains of particles in a squarelike lattice. We compute the individual particle contributions to the stress tensor and discover that the largest contributors to the shear stress are primarily located in these lower density, defect regions. The defect structure enables the formation of compressed chains of particles to resist the shear, but these chains are transient and short-lived. The inclusion of a contact friction force allows the stress-bearing structures to grow into a system-spanning network, thereby disrupting the order and drastically increasing the suspension viscosity. 
    more » « less
  3. We present a numerical study of non-colloidal spherical and rigid particles suspended in Newtonian, shear thinning and shear thickening fluids employing an immersed boundary method. We consider a linear Couette configuration to explore a wide range of solid volume fractions ( $0.1\leqslant \unicode[STIX]{x1D6F7}\leqslant 0.4$ ) and particle Reynolds numbers ( $0.1\leqslant Re_{p}\leqslant 10$ ). We report the distribution of solid and fluid phase velocity and solid volume fraction and show that close to the boundaries inertial effects result in a significant slip velocity between the solid and fluid phase. The local solid volume fraction profiles indicate particle layering close to the walls, which increases with the nominal $\unicode[STIX]{x1D6F7}$ . This feature is associated with the confinement effects. We calculate the probability density function of local strain rates and compare the latter’s mean value with the values estimated from the homogenisation theory of Chateau et al. ( J. Rheol. , vol. 52, 2008, pp. 489–506), indicating a reasonable agreement in the Stokesian regime. Both the mean value and standard deviation of the local strain rates increase primarily with the solid volume fraction and secondarily with the $Re_{p}$ . The wide spectrum of the local shear rate and its dependency on $\unicode[STIX]{x1D6F7}$ and $Re_{p}$ point to the deficiencies of the mean value of the local shear rates in estimating the rheology of these non-colloidal complex suspensions. Finally, we show that in the presence of inertia, the effective viscosity of these non-colloidal suspensions deviates from that of Stokesian suspensions. We discuss how inertia affects the microstructure and provide a scaling argument to give a closure for the suspension shear stress for both Newtonian and power-law suspending fluids. The stress closure is valid for moderate particle Reynolds numbers, $O(Re_{p})\sim 10$ . 
    more » « less
  4. null (Ed.)
    This study explores thermal convection in suspensions of neutrally buoyant, non-colloidal suspensions confined between horizontal plates. A constitutive diffusion equation is used to model the dynamics of the particles suspended in a viscous fluid and it is coupled with the flow equations. We employ a simple model that was proposed by Metzger, Rahli & Yin ( J. Fluid Mech. , vol. 724, 2013, pp. 527–552) for the effective thermal diffusivity of suspensions. This model considers the effect of shear-induced diffusion and gives the thermal diffusivity increasing linearly with the thermal Péclet number ( Pe ) and the particle volume fraction ( ϕ ). Both linear stability analysis and numerical simulation based on the mathematical models are performed for various bulk particle volume fractions $({\phi _b})$ ranging from 0 to 0.3. The critical Rayleigh number $(R{a_c})$ grows gradually by increasing ${\phi _b}$ from the critical value $(R{a_c} = 1708)$ for a pure Newtonian fluid, while the critical wavenumber $({k_c})$ remains constant at 3.12. The transition from the conduction state of suspensions is subcritical, whereas it is supercritical for the convection in a pure Newtonian fluid $({\phi _b} = 0)$ . The heat transfer in moderately dense suspensions $({\phi _b} = 0.2\text{--}0.3)$ is significantly enhanced by convection rolls for small Rayleigh number ( Ra ) close to $R{a_c}$ . We also found a power-law increase of the Nusselt number ( Nu ) with Ra , namely, $Nu\sim R{a^b}$ for relatively large values of Ra where the scaling exponent b decreases with ${\phi _b}$ . Finally, it turns out that the shear-induced migration of particles can modify the heat transfer. 
    more » « less
  5. Debris flows are dense and fast-moving complex suspensions of soil and water that threaten lives and infrastructure. Assessing the hazard potential of debris flows requires predicting yield and flow behavior. Reported measurements of rheology for debris flow slurries are highly variable and sometimes contradictory due to heterogeneity in particle composition and volume fraction ( ϕ ) and also inconsistent measurement methods. Here we examine the composition and flow behavior of source materials that formed the postwildfire debris flows in Montecito, CA, in 2018, for a wide range of ϕ that encapsulates debris flow formation by overland flow. We find that shear viscosity and yield stress are controlled by the distance from jamming, Δ ϕ = ϕ m − ϕ , where the jamming fraction ϕ m is a material parameter that depends on grain size polydispersity and friction. By rescaling shear and viscous stresses to account for these effects, the data collapse onto a simple nondimensional flow curve indicative of a Bingham plastic (viscoplastic) fluid. Given the highly nonlinear dependence of rheology on Δ ϕ , our findings suggest that determining the jamming fraction for natural materials will significantly improve flow models for geophysical suspensions such as hyperconcentrated flows and debris flows. 
    more » « less