skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 31, 2026

Title: Soil microbiome composition is highly responsive to precipitation and plant composition manipulations in a field biodiversity experiment
IntroductionClimate change and plant biodiversity loss have large impacts on terrestrial ecosystem function, with the soil microbiome being primary mediators of these effects. The soil microbiome is a complex system, consisting of multiple functional groups with contrasting life histories. Most studies of climate forces and plant biodiversity effects on microbiome consider the perturbations and the microbial functional groups in isolation preventing us from understanding the full picture of the relative and differential impacts of perturbations on microbial functional groups. MethodsWe measured changes in multiple microbial communities with different functionality, including plant mutualists and pathogens, after three growing seasons in a full-factorial experiment manipulating precipitation (50%, 150% of ambient), plant diversity, and plant composition. Using amplicon sequencing to characterize the response of fungi, arbuscular mycorrhizal fungi, bacteria and oomycetes, and we found that composition of all microbial groups differentiated strongly between precipitation treatments. ResultsOomycete and bacterial diversity increased with 150% precipitation, while AM and saprotroph fungal diversity decreased. Microbial differentiation in response to plant family and plant species composition was stronger after the third growing season than observed after year one. However, microbial response to plant species richness was weaker in year three. Microbiome response to plant composition was largely independent of the response to precipitation, except for oomycetes, which had greater response to plant composition in high precipitation. DiscussionThese findings build upon prior findings that these microbial community members differentially respond to plant community compositional treatments, by measuring the response over 3 years and with the addition of precipitation treatments. We find that both changes in climate and plant composition can drive major differences in soil microbiome composition, which can feed back on plant community structure and alter ecosystem function.  more » « less
Award ID(s):
2120153
PAR ID:
10595563
Author(s) / Creator(s):
; ;
Publisher / Repository:
Frontiers in Microbiomes
Date Published:
Journal Name:
Frontiers in Microbiomes
Volume:
4
ISSN:
2813-4338
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Soil-borne pathogens structure plant communities, shaping their diversity, and through these effects may mediate plant responses to climate change and disturbance. Little is known, however, about the environmental determinants of plant pathogen communities. Therefore, we explored the impact of climate gradients and anthropogenic disturbance on root-associated pathogens in grasslands. We examined the community structure of two pathogenic groups—fungal pathogens and oomycetes—in undisturbed and anthropogenically disturbed grasslands across a natural precipitation and temperature gradient in the Midwestern USA. In undisturbed grasslands, precipitation and temperature gradients were important predictors of pathogen community richness and composition. Oomycete richness increased with precipitation, while fungal pathogen richness depended on an interaction of precipitation and temperature, with precipitation increasing richness most with higher temperatures. Disturbance altered plant pathogen composition and precipitation and temperature had a reduced effect on pathogen richness and composition in disturbed grasslands. Because pathogens can mediate plant community diversity and structure, the sensitivity of pathogens to disturbance and climate suggests that degradation of the pathogen community may mediate loss, or limit restoration of, native plant diversity in disturbed grasslands, and may modify plant community response to climate change. 
    more » « less
  2. Summary Microbial communities will experience novel climates in the future. Dispersal is now recognized as a driver of microbial diversity and function, but our understanding of how dispersal influences responses to novel climates is limited. We experimentally tested how the exclusion of aerially dispersed fungi and bacteria altered the compositional and functional response of soil microbial communities to drought. We manipulated dispersal and drought by collecting aerially deposited microbes after precipitation events and subjecting soil mesocosms to either filter‐sterilized rain (no dispersal) or unfiltered rain (dispersal) and to either drought (25% ambient) or ambient rainfall for 6 months. We characterized community composition by sequencing 16S and ITS rRNA regions and function using community‐level physiological profiles. Treatments without dispersal had lower soil microbial biomass and metabolic diversity but higher bacterial and fungal species richness. Dispersal also altered soil community response to drought; drought had a stronger effect on bacterial (but not fungal) community composition, and induced greater functional loss, when dispersal was present. Surprisingly, neither immigrants nor drought‐tolerant taxa had higher abundance in dispersal treatments. We show experimentally that natural aerial dispersal rate alters soil microbial responses to disturbance. Changes in dispersal rates should be considered when predicting microbial responses to climate change. 
    more » « less
  3. Abstract Research suggests that microbiomes play a major role in structuring plant communities and influencing ecosystem processes, however, the relative roles and strength of change of microbial components have not been identified. We measured the response of fungal, arbuscular mycorrhizal fungal (AMF), bacteria, and oomycete composition 4 months after planting of field plots that varied in plant composition and diversity. Plots were planted using 18 prairie plant species from three plant families (Poaceae, Fabaceae, and Asteraceae) in monoculture, 2, 3, or 6 species richness mixtures and either species within multiple families or one family. Soil cores were collected and homogenized per plot and DNA were extracted from soil and roots of each plot. We found that all microbial groups responded to the planting design, indicating rapid microbiome response to plant composition. Fungal pathogen communities were strongly affected by plant diversity. We identified OTUs from genera of putatively pathogenic fungi that increased with plant family, indicating likely pathogen specificity. Bacteria were strongly differentiated by plant family in roots but not soil. Fungal pathogen diversity increased with planted species richness, while oomycete diversity, as well as bacterial diversity in roots, decreased. AMF differentiation in roots was detected with individual plant species, but not plant family or richness. Fungal saprotroph composition differentiated between plant family composition in plots, providing evidence for decomposer home-field advantage. The observed patterns are consistent with rapid microbiome differentiation with plant composition, which could generate rapid feedbacks on plant growth in the field, thereby potentially influencing plant community structure, and influence ecosystem processes. These findings highlight the importance of native microbial inoculation in restoration. 
    more » « less
  4. Abstract PremiseEndophytic plant‐microbe interactions range from mutualistic relationships that confer important ecological and agricultural traits to neutral or quasi‐parasitic relationships. In contrast to root‐associated endophytes, the role of environmental and host‐related factors in the acquisition of leaf endophyte communities at broad spatial and phylogenetic scales remains sparsely studied. We assessed endofoliar diversity to test the hypothesis that membership in these microbial communities is driven primarily by abiotic environment and host phylogeny. MethodsWe used a broad geographic coverage of North America in the genusHeucheraL. (Saxifragaceae), representing 32 species and varieties across 161 populations. Bacterial and fungal communities were characterized using 16S and ITS amplicon sequencing, respectively, and standard diversity metrics were calculated. We assembled environmental predictors for microbial diversity at collection sites, including latitude, elevation, temperature, precipitation, and soil parameters. ResultsAssembly patterns differed between bacterial and fungal endophytes. Host phylogeny was significantly associated with bacteria, while geographic distance was the best predictor of fungal community composition. Species richness and phylogenetic diversity were consistent across sites and species, with only fungi showing a response to aridity and precipitation for some metrics. Unlike what has been observed with root‐associated microbial communities, in this system microbes show no relationship with pH or other soil factors. ConclusionsOverall, this work improves our understanding of the large‐scale patterns of diversity and community composition in leaf endophytes and highlights the relative significance of environmental and host‐related factors in driving different microbial communities within the leaf microbiome. 
    more » « less
  5. Abstract The Madrean Sky Islands are mountain ranges isolated by a ‘desert sea’. This area is a biodiversity hotspot currently threatened by climate change. Here, we studied soil microbial communities along elevational gradients in eight Madrean Sky Islands in southeastern Arizona (USA). Our results showed that while elevational microbial richness gradients were weak and not consistent across different mountains, soil properties strongly influenced microbial community composition (overall composition and the abundance of key functional groups) along elevational gradients. In particular, warming is associated with a higher abundance of soil‐borne fungal plant pathogens that concomitantly might facilitate upward elevational shifts of plant species released from negative plant–soil feedbacks. Furthermore, projected warming and drought in the area aggravated by anthropogenic nitrogen deposition on mountain tops (and thus, decreasing nitrogen limitation) can enhance a shift from ectomycorrhizal to arbuscular mycorrhizal fungi. Overall, these results indicate that climate change effects on plant–soil interactions might have profound ecosystem consequences. 
    more » « less