- NSF-PAR ID:
- 10407946
- Date Published:
- Journal Name:
- Frontiers in Marine Science
- Volume:
- 9
- ISSN:
- 2296-7745
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Inputs of new nitrogen by cyanobacterial diazotrophs are critical to ocean ecosystem structure and function. Relative to other ocean regions, there is a lack of data on the distribution of these microbes in the western South Atlantic. Here, the abundance of six diazotroph phylotypes: Trichodesmium , Crocosphaera , UCYN-A, Richelia associated with Rhizosolenia (Het-1) or Hemiaulus (Het-2), and Calothrix associated with Chaetoceros (Het-3) was measured by quantitative PCR (qPCR) of the nifH gene along a transect extending from the shelf-break to the open ocean along the Vitória-Trindade seamount chain (1200 km). Using nifH gene copies as a proxy for phylotype abundance, Crocosphaera signals were the most abundant, with a broad distribution throughout the study region. Trichodesmium signals were the second most abundant, with the greatest numbers confined to the warmer waters closer to the coast, and a significant positive correlation with temperature. The average signals for the host-associated diazotrophs (UCYN-A, Het-1, and Het-2) were consistently lower than for the other phylotypes. These findings expand measurements of cyanobacterial diazotroph distribution in the western South Atlantic, and provide a new resource to enhance modeling studies focused on patterns of nitrogen fixation in the global ocean.more » « less
-
Abstract In eastern boundary current systems, strong coastal upwelling brings deep, nutrient‐rich waters to the surface ocean, supporting a productive food web. The nitrate load in water masses that supply the region can be impacted by a variety of climate‐related processes that subsequently modulate primary productivity. In this study, two coastal upwelling regimes along central and southern California were sampled seasonally for nitrogen and oxygen stable isotopes of nitrate (i.e., nitrate isotopes) over several years (2010–2016) on 14 California Cooperative Oceanic Fisheries Investigations (CalCOFI) cruises. Seasonal, interannual, and spatial variations in euphotic zone nitrate isotopes were largely driven by the extent of nitrate utilization, sometimes linked to iron limitation of diatom productivity. Pronounced isotopic enrichment developed with the El Niño conditions in late 2015 and early 2016 which likely resulted from increased nitrate utilization linked to reduced nitrate supply to the euphotic zone. Differential enrichment of nitrogen and oxygen isotopes was observed in the surface ocean, suggesting that phytoplankton increased their reliance on locally nitrified (recycled) nitrate during warmer and more stratified periods. Overall, nitrate isotopes effectively differentiated important euphotic zone processes such as nitrate assimilation and nitrification, while archiving the influence of disparate controls such as iron limitation and climatic events through their effects on nitrate utilization and isotopic fractionation.
-
Abstract Following the passage of a tropical cyclone (TC) the changes in temperature, salinity, nutrient concentration, water clarity, pigments and phytoplankton taxa were assessed at 42 stations from eight sites ranging from the open ocean, through the coastal zone and into estuaries. The impacts of the TC were estimated relative to the long-term average (LTA) conditions as well as before and after the TC. Over all sites the most consistent environmental impacts associated with TCs were an average 41% increase in turbidity, a 13% decline in salinity and a 2% decline in temperature relative to the LTA. In the open ocean, the nutrient concentrations, cyanobacteria and picoeukaryote abundances increased at depths between 100 and 150 m for up to 3 months following a TC. While at the riverine end of coastal estuaries, the predominate short-term response was a strong decline in salinity and phytoplankton suggesting these impacts were initially dominated by advection. The more intermediate coastal water-bodies generally experienced declines in salinity, significant reductions in water clarity, plus significant increases in nutrient concentrations and phytoplankton abundance. These intermediate waters typically developed dinoflagellate, diatom or cryptophyte blooms that elevated phytoplankton biomass for 1–3 months following a TC.
-
Abstract The colony-forming cyanobacteria
Trichodesmium spp. are considered one of the most important nitrogen-fixing genera in the warm, low nutrient ocean. Despite this central biogeochemical role, many questions about their evolution, physiology, and trophic interactions remain unanswered. To address these questions, we describeTrichodesmium pangenomic potential via significantly improved genomic assemblies from two isolates and 15 new >50% completeTrichodesmium metagenome-assembled genomes from hand-picked,Trichodesmium colonies spanning the Atlantic Ocean. Phylogenomics identified ~four N2fixing clades ofTrichodesmium across the transect, withT. thiebautii dominating the colony-specific reads. Pangenomic analyses showed that allT. thiebautii MAGs are enriched in COG defense mechanisms and encode a vertically inherited Type III-B Clustered Regularly Interspaced Short Palindromic Repeats and associated protein-based immunity system (CRISPR-Cas). Surprisingly, this CRISPR-Cas system was absent in allT. erythraeum genomes, vertically inherited byT. thiebautii , and correlated with increased signatures of horizontal gene transfer. Additionally, the system was expressed in metaproteomic and transcriptomic datasets and CRISPR spacer sequences with 100% identical hits to field-assembled, putative phage genome fragments were identified. While the currently CO2-limitedT. erythraeum is expected to be a ‘winner’ of anthropogenic climate change, their genomic dearth of known phage resistance mechanisms, compared toT. thiebautii , could put this outcome in question. Thus, the clear demarcation ofT. thiebautii maintaining CRISPR-Cas systems, whileT. erythraeum does not, identifiesTrichodesmium as an ecologically important CRISPR-Cas model system, and highlights the need for more research on phage-Trichodesmium interactions. -
ABSTRACT Trichodesmium is a globally distributed cyanobacterium whose nitrogen-fixing capability fuels primary production in warm oligotrophic oceans. Like many photoautotrophs, Trichodesmium serves as a host to various other microorganisms, yet little is known about how this associated community modulates fluxes of environmentally relevant chemical species into and out of the supraorganismal structure. Here, we utilized metatranscriptomics to examine gene expression activities of microbial communities associated with Trichodesmium erythraeum (strain IMS101) using laboratory-maintained enrichment cultures that have previously been shown to harbor microbial communities similar to those of natural populations. In enrichments maintained under two distinct CO 2 concentrations for ∼8 years, the community transcriptional profiles were found to be specific to the treatment, demonstrating a restructuring of overall gene expression had occurred. Some of this restructuring involved significant increases in community respiration-related transcripts under elevated CO 2 , potentially facilitating the corresponding measured increases in host nitrogen fixation rates. Particularly of note, in both treatments, community transcripts involved in the reduction of nitrate, nitrite, and nitrous oxide were detected, suggesting the associated organisms may play a role in colony-level nitrogen cycling. Lastly, a taxon-specific analysis revealed distinct ecological niches of consistently cooccurring major taxa that may enable, or even encourage, the stable cohabitation of a diverse community within Trichodesmium consortia. IMPORTANCE Trichodesmium is a genus of globally distributed, nitrogen-fixing marine cyanobacteria. As a source of new nitrogen in otherwise nitrogen-deficient systems, these organisms help fuel carbon fixation carried out by other more abundant photoautotrophs and thereby have significant roles in global nitrogen and carbon cycling. Members of the Trichodesmium genus tend to form large macroscopic colonies that appear to perpetually host an association of diverse interacting microbes distinct from the surrounding seawater, potentially making the entire assemblage a unique miniature ecosystem. Since its first successful cultivation in the early 1990s, there have been questions about the potential interdependencies between Trichodesmium and its associated microbial community and whether the host's seemingly enigmatic nitrogen fixation schema somehow involved or benefited from its epibionts. Here, we revisit these old questions with new technology and investigate gene expression activities of microbial communities living in association with Trichodesmium .more » « less