Recent work has suggested that the oxygen deficient zone (ODZ) and overlying surface waters of the eastern tropical South Pacific (ETSP) is a potential niche for dinitrogen (N2) fixation. Rates of dinitrogen fixation were measured in the ETSP above and within the ODZ in July 2013 using a modified15N2bubble addition method, wherein a bubble was added, mixed, and then removed, and the isotopic enrichment of the dissolved N2was measured directly for each incubation. N2fixation rates in the euphotic zone ranged from below detection to 3.9 nmol L−1d−1and were below detection at all depths surveyed within the ODZ. Depth‐integrated rates ranged from below detection to 289.7
Biological nitrogen fixation is a key process balancing the loss of combined nitrogen in the marine nitrogen cycle. Its relevance in upwelling or high nutrient regions is still unclear, with the few available studies in these regions of the ocean reporting rates that vary widely from below detection limit to > 100 nmol N L−1 d−1. In the eastern tropical Atlantic Ocean, two open ocean upwelling systems are active in boreal summer. One is the seasonal equatorial upwelling, where the residual phosphorus associated with aged upwelled waters is suggested to enhance nitrogen fixation in this season. The other is the Guinea Dome, a thermal upwelling dome. We conducted two surveys along 23° W across the Guinea Dome and the Equator from 15° N to 5° S in September 2015 and August–September 2016 with high latitudinal resolution (20–60 nm between stations). The abundance of
- Award ID(s):
- 1737078
- PAR ID:
- 10488906
- Publisher / Repository:
- Springer Link
- Date Published:
- Journal Name:
- Biogeochemistry
- Volume:
- 166
- Issue:
- 3
- ISSN:
- 0168-2563
- Page Range / eLocation ID:
- 191 to 210
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract μ mol m−2d−1. DNA and RNA of diversenifH genes were detected at both surface waters and in the ODZ. However, the results of this study suggest that N2fixation rates were low and contribute little to N cycling in the ETSP. -
The spatial distribution of marine di-nitrogen (N2) fixation informs our understanding of the sensitivities of this process as well as the potential for this new nitrogen (N) source to drive export production, influencing the global carbon (C) cycle and climate. Using geochemically-derived δ15N budgets, we quantified rates of N2fixation and its importance for supporting export production at stations sampled near the southwest Pacific Tonga-Kermadec Arc. Recent observations indicate that shallow (<300 m) hydrothermal vents located along the arc provide significant dissolved iron to the euphotic zone, stimulating N2fixation. Here we compare measurements of water column δ15NNO3+NO2with sinking particulate δ15N collected by short-term sediment traps deployed at 170 m and 270 m at stations in close proximity to subsurface hydrothermal activity, and the δ15N of N2fixation. Results from the δ15N budgets yield high geochemically-based N2fixation rates (282 to 638 µmol N m-2d-1) at stations impacted by hydrothermal activity, supporting 64 to 92% of export production in late spring. These results are consistent with contemporaneous15N2uptake rate estimates and molecular work describing highmore » « less
Trichodesmium spp. and other diazotroph abundances associated with elevated N2fixation rates. Further, the δ15N of sinking particulate N collected at 1000 m over an annual cycle revealed sinking fluxes peaked in the summer and coincided with the lowest δ15N, while lower winter sinking fluxes had the highest δ15N, indicating isotopically distinct N sources supporting export seasonally, and aligning with observations from most other δ15N budgets in oligotrophic regions. Consequently, the significant regional N2fixation input to the late spring/summer Western Tropical South Pacific results in the accumulation of low-δ15NNO3+NO2in the upper thermocline that works to lower the elevated δ15NNO3+NO2generated in the oxygen deficient zones in the Eastern Tropical South Pacific. -
Abstract In the North Atlantic Ocean, dinitrogen (N2) fixation on the western continental shelf represents a significant fraction of basin‐wide nitrogen (N) inputs. However, the factors regulating coastal N2fixation remain poorly understood, in part due to sharp physico‐chemical gradients and dynamic water mass interactions that are difficult to constrain via traditional oceanographic approaches. This study sought to characterize the spatial heterogeneity of N2fixation on the western North Atlantic shelf, at the confluence of Mid‐ and South Atlantic Bight shelf waters and the Gulf Stream, in August 2016. Rates were quantified using the15N2bubble release method and used to build empirical models of regional N2fixation via a random forest machine learning approach. N2fixation rates were then predicted from high‐resolution CTD and satellite data to infer the variability of its depth and surface distributions, respectively. Our findings suggest that the frontal mixing zone created conditions conducive to exceptionally high N2fixation rates (> 100 nmol N L−1d−1), which were likely driven by the haptophyte‐symbiont UCYN‐A. Above and below this hotspot, N2fixation rates were highest on the shelf due to the high particulate N concentrations there. Conversely, specific N2uptake rates, a biomass‐independent metric for diazotroph activity, were enhanced in the oligotrophic slope waters. Broadly, these observations suggest that N2fixation is favored offshore but occurs continuously across the shelf. Nevertheless, our model results indicate that there is a niche for diazotrophs along the coastline as phytoplankton populations begin to decline, likely due to exhaustion of coastal nutrients.
-
Summary In the surface waters of the warm oligotrophic ocean, filaments and aggregated colonies of the nitrogen (N)‐fixing cyanobacterium
Trichodesmium create microscale nutrient‐rich oases. These hotspots fuel primary productivity and harbour a diverse consortium of heterotrophs. Interactions with associated microbiota can affect the physiology ofTrichodesmium , often in ways that have been predicted to support its growth. Recently, it was found that trimethylamine (TMA), a globally abundant organic N compound, inhibits N2fixation in cultures ofTrichodesmium without impairing growth rate, suggesting thatTrichodesmium can use TMA as an alternate N source. In this study,15N‐TMA DNA stable isotope probing (SIP) of aTrichodesmium enrichment was employed to further investigate TMA metabolism and determine whether TMA‐N is incorporated directly or secondarily via cross‐feeding facilitated by microbial associates. Herein, we identify two members of the marineRoseobacter clade (MRC) of Alphaproteobacteria as the likely metabolizers of TMA and provide genomic evidence that they converted TMA into a more readily available form of N, e.g., ammonium (NH4+), which was subsequently used byTrichodesmium and the rest of the community. The results implicate microbiome‐mediated carbon (C) and N transformations in modulating N2fixation and thus highlight the involvement of host‐associated heterotrophs in global biogeochemical cycling. -
Abstract The photosynthetic cyanobacterium Trichodesmium is widely distributed in the surface low latitude ocean where it contributes significantly to N2 fixation and primary productivity. Previous studies found nifH genes and intact Trichodesmium colonies in the sunlight-deprived meso- and bathypelagic layers of the ocean (200–4000 m depth). Yet, the ability of Trichodesmium to fix N2 in the dark ocean has not been explored. We performed 15N2 incubations in sediment traps at 170, 270 and 1000 m at two locations in the South Pacific. Sinking Trichodesmium colonies fixed N2 at similar rates than previously observed in the surface ocean (36–214 fmol N cell−1 d−1). This activity accounted for 40 ± 28% of the bulk N2 fixation rates measured in the traps, indicating that other diazotrophs were also active in the mesopelagic zone. Accordingly, cDNA nifH amplicon sequencing revealed that while Trichodesmium accounted for most of the expressed nifH genes in the traps, other diazotrophs such as Chlorobium and Deltaproteobacteria were also active. Laboratory experiments simulating mesopelagic conditions confirmed that increasing hydrostatic pressure and decreasing temperature reduced but did not completely inhibit N2 fixation in Trichodesmium. Finally, using a cell metabolism model we predict that Trichodesmium uses photosynthesis-derived stored carbon to sustain N2 fixation while sinking into the mesopelagic. We conclude that sinking Trichodesmium provides ammonium, dissolved organic matter and biomass to mesopelagic prokaryotes.