Using density functional theory (DFT) calculations, we investigated the electrochemical reduction of CO 2 and the competing H 2 evolution reaction on ligand-protected Au 25 nanoclusters (NCs) of different charge states, Au 25 (SR) 18 q ( q = −1, 0, +1). Our results showed that regardless of charge state, CO 2 electroreduction over Au 25 (SR) 18 q NCs was not feasible because of the extreme endothermicity to stabilize the carboxyl (COOH) intermediate. When we accounted for the removal of a ligand (both –SR and –R) from Au 25 (SR) 18 q under electrochemical conditions, surprisingly we found that this is a thermodynamically feasible process at the experimentally applied potentials with the generated surface sites becoming active centers for electrocatalysis. In every case, the negatively charged NCs, losing a ligand from their surface during electrochemical conditions, were found to significantly stabilize the COOH intermediate, resulting in dramatically enhanced CO 2 reduction. The generated sites for CO 2 reduction were also found to be active for H 2 evolution, which agrees with experimental observations that these two processes compete. Interestingly, we found that the removal of an –R ligand from the negatively charged NC, resulted in a catalyst that was both active and selective for CO 2 reduction. This work highlights the importance of both the overall charge state and generation of catalytically active surface sites on ligand-protected NCs, while elucidating the CO 2 electroreduction mechanisms. Overall, our work rationalizes a series of experimental observations and demonstrates pathways to convert a very stable and catalytically inactive NC to an active electrocatalyst. 
                        more » 
                        « less   
                    
                            
                            Ligand removal energetics control CO 2 electroreduction selectivity on atomically precise, ligated alloy nanoclusters
                        
                    
    
            Atomically precise, thiolate-protected gold nanoclusters (TPNCs) exhibit remarkable catalytic performance for the electrochemical reduction of carbon dioxide (CO 2 R) to CO. The origin of their high CO 2 R activity and selectivity has been attributed to partial ligand removal from the thiolate-covered surfaces of TPNCs to expose catalytically active sulfur atoms. Recently, heterometal doped (alloy) TPNCs have been shown to exhibit enhanced CO 2 R activity and selectivity compared to their monometallic counterparts. However, systematic studies on the effect of doping (metal type and location on TPNC) on active site exposure and CO 2 R activity are missing in literature. Herein, we apply Density Functional Theory calculations to investigate the effect of heterometal (Pt, Pd, Hg and Cd) doping of Au 25 (SR) 18 TPNC on the active site exposure and CO 2 R activity and selectivity. We reveal that doping significantly modifies relevant TPNC electronic properties, such as electron affinity, while also altering partial ligand removal and carboxyl (*COOH) intermediate formation energies. Furthermore, we demonstrate that changing the dopant ( e.g. Hg) position can change the selectivity of the TPNC towards CO (g) or H 2(g) formation, highlighting the importance of dopant locations in TPNC-based CO 2 R. Most notably, we report a universal ( i.e. capturing different dopant types and positions) linear trend between the ligand removal energy and i) the *COOH formation energy, as well as, ii) the hydrogen (*H) formation energy on the different alloy TPNCs. Thus, utilizing the ligand removal energy as a descriptor for CO 2 RR activity and selectivity, our work opens new avenues for accelerated computational screening of different alloy TPNCs for electrocatalytic CO 2 R applications. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1652694
- PAR ID:
- 10407955
- Date Published:
- Journal Name:
- Environmental Science: Nano
- Volume:
- 9
- Issue:
- 6
- ISSN:
- 2051-8153
- Page Range / eLocation ID:
- 2032 to 2040
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Thiolate-protected metal nanoclusters (TPNCs) have attracted great interest in the last few decades due to their high stability, atomically precise structure, and compelling physicochemical properties. Among their various applications, TPNCs exhibit excellent catalytic activity for numerous reactions; however, recent work revealed that these systems must undergo partial ligand removal in order to generate active sites. Despite the importance of ligand removal in both catalysis and stability of TPNCs, the role of ligands and metal type in the process is not well understood. Herein, we utilize Density Functional Theory to understand the energetic interplay between metal–sulfur and sulfur–ligand bond dissociation in metal–thiolate systems. We first probe 66 metal–thiolate molecular complexes across combinations of M = Ag, Au, and Cu with twenty-two different ligands (R). Our results reveal that the energetics to break the metal–sulfur and sulfur–ligand bonds are strongly correlated and can be connected across all complexes through metal atomic ionization potentials. We then extend our work to the experimentally relevant [M 25 (SR) 18 ] − TPNC, revealing the same correlations at the nanocluster level. Importantly, we unify our work by introducing a simple methodology to predict TPNC ligand removal energetics solely from calculations performed on metal–ligand molecular complexes. Finally, a computational mechanistic study was performed to investigate the hydrogenation pathways for SCH 3 -based complexes. The energy barriers for these systems revealed, in addition to thermodynamics, that kinetics favor the break of S–R over the M–S bond in the case of the Au complex. Our computational results rationalize several experimental observations pertinent to ligand effects on TPNCs. Overall, our introduced model provides an accelerated path to predict TPNC ligand removal energies, thus aiding towards targeted design of TPNC catalysts.more » « less
- 
            Dissecting Critical Factors for Electrochemical CO 2 Reduction on Atomically Precise Au NanoclustersAbstract This work investigates the critical factors impacting electrochemical CO2reduction reaction (CO2RR) using atomically precise Au nanoclusters (NCs) as electrocatalysts. First, the influence of size on CO2RR is studied by precisely controlling NC size in the 1–2.5 nm regime. We find that the electrocatalytic CO partial current density increases for smaller NCs, but the CO Faradaic efficiency (FE) is not directly associated with the NC size. This indicates that the surface‐to‐volume ratio, i.e. the population of active sites, is the dominant factor for determining the catalytic activity, but the selectivity is not directly impacted by size. Second, we compare the CO2RR performance of Au38isomers (Au38Q and Au38T) to reveal that structural rearrangement of identical size NCs can lead to significant changes in both CO2RR activity and selectivity. Au38Q shows higher activity and selectivity towards CO than Au38T, and density functional theory (DFT) calculations reveal that the average formation energy of the key *COOH intermediate on the proposed active sites is significantly lower on Au38Q than Au38T. These results demonstrate how the structural isomerism can impact stabilization of reaction intermediates as well as the overall CO2RR performance of identical size Au NCs. Overall, this work provides important structure–property relationships for tailoring the NCs for CO2RR.more » « less
- 
            Abstract Carbon‐supported nitrogen‐coordinated single‐metal site catalysts (i.e., M−N−C, M: Fe, Co, or Ni) are active for the electrochemical CO2reduction reaction (CO2RR) to CO. Further improving their intrinsic activity and selectivity by tuning their N−M bond structures and coordination is limited. Herein, we expand the coordination environments of M−N−C catalysts by designing dual‐metal active sites. The Ni‐Fe catalyst exhibited the most efficient CO2RR activity and promising stability compared to other combinations. Advanced structural characterization and theoretical prediction suggest that the most active N‐coordinated dual‐metal site configurations are 2N‐bridged (Fe‐Ni)N6, in which FeN4and NiN4moieties are shared with two N atoms. Two metals (i.e., Fe and Ni) in the dual‐metal site likely generate a synergy to enable more optimal *COOH adsorption and *CO desorption than single‐metal sites (FeN4or NiN4) with improved intrinsic catalytic activity and selectivity.more » « less
- 
            null (Ed.)Controlled energy transfer has been found to be one of the most effective ways of designing tunable and white photoluminescent phosphors. Utilizing host emission to achieve the same would lead to a new dimension in the design strategy for novel luminescent materials in solid state lighting and display devices. In this work, we have achieved controlled energy transfer by suppressing the host to dopant energy transfer in La 2 Hf 2 O 7 :Eu 3+ nanoparticles (NPs) by co-doping with uranium ions. Uranium acts as a barrier between the oxygen vacancies of the La 2 Hf 2 O 7 host and Eu 3+ doping ions to increase their separation and reduce the non-radiative energy transfer between them. Density functional theory (DFT) calculations of defect formation energy showed that the Eu 3+ dopant occupies the La 3+ site and the uranium ion occupies the Hf 4+ site. Co-doping the La 2 Hf 2 O 7 :Eu 3+ NPs with uranium ions creates negatively charged lanthanum and hafnium vacancies making the system highly electron rich. Formation of cation vacancies is expected to compensate the excess charge in the U and Eu co-doped La 2 Hf 2 O 7 NPs suppressing the formation of oxygen vacancies. This work shows how one can utilize the full color gamut in the La 2 Hf 2 O 7 :Eu 3+ ,U 6+ NPs with blue, green and red emissions from the host, uranium and europium, respectively, to produce near perfect white light emission.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    