skip to main content


Title: The role of motion in visual working memory for dynamic stimuli: More lagged but more precise representations of moving objects
Award ID(s):
1653457
NSF-PAR ID:
10408046
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Attention, Perception, & Psychophysics
ISSN:
1943-3921
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Probing the underlying attributes of triplet-triplet annihilation-based upconversion systems is necessary to enable future practical applications. Through a combination of excitation power-dependent upconversion measurements under applied magnetic fields and molecular dynamics simulations, Schmidt and coworkers have recently demonstrated a quantitative approach for extracting critical parameters detailing the intricate upconversion process. 
    more » « less
  2. Abstract We study both the practical and theoretical efficiency of private information retrieval (PIR) protocols in a model wherein several untrusted servers work to obliviously service remote clients’ requests for data and yet no pair of servers colludes in a bid to violate said obliviousness. In exchange for such a strong security assumption, we obtain new PIR protocols exhibiting remarkable efficiency with respect to every cost metric—download, upload, computation, and round complexity—typically considered in the PIR literature. The new constructions extend a multiserver PIR protocol of Shah, Rashmi, and Ramchandran (ISIT 2014), which exhibits a remarkable property of its own: to fetch a b -bit record from a collection of r such records, the client need only download b + 1 bits total. We find that allowing “a bit more” download (and optionally introducing computational assumptions) yields a family of protocols offering very attractive trade-offs. In addition to Shah et al.’s protocol, this family includes as special cases (2-server instances of) the seminal protocol of Chor, Goldreich, Kushilevitz, and Sudan (FOCS 1995) and the recent DPF-based protocol of Boyle, Gilboa, and Ishai (CCS 2016). An implicit “folklore” axiom that dogmatically permeates the research literature on multiserver PIR posits that the latter protocols are the “most efficient” protocols possible in the perfectly and computationally private settings, respectively. Yet our findings soundly refute this supposed axiom: These special cases are (by far) the least performant representatives of our family, with essentially all other parameter settings yielding instances that are significantly faster. 
    more » « less
  3. null (Ed.)
    ABSTRACT Salt-marsh foraminifera are sea-level proxies used to quantitatively reconstruct Holocene paleo-marsh elevations (PME) and subsequently relative sea level (RSL). The reliability of these reconstructions is partly dependent upon counting enough foraminifera to accurately characterize assemblages, while counting fewer tests allows more samples to be processed. We test the influence of count size on PME reconstructions by repeatedly subsampling foraminiferal assemblages preserved in a core of salt-marsh peat (from Newfoundland, Canada) with unusually large counts (up to 1595). Application of a single, weighted-averaging transfer function developed from a regional-scale modern training set to these ecologically-plausible simulated assemblages generated PME reconstructions at count sizes of 10–700. Reconstructed PMEs stabilize at counts sizes greater than ∼50 and counts exceeding ∼250 tests show little return for the additional time invested. The absence of some rare taxa in low counts is unlikely to markedly influence results from weighted-averaging transfer functions. Subsampling of modern foraminifera indicates that cross-validated transfer function performance shows only modest improvement when more than ∼40 foraminifera are counted. Studies seeking to understand multi-meter and millennial scale RSL trends should count more than ∼50 tests. The precision sought by studies aiming to resolve decimeter- and decadal-scale RSL variability is best achieved with counts greater than ∼75. In most studies seeking to reconstruct PME, effort is more productively allocated by counting relatively fewer foraminifera in more core samples than in counting large numbers of individuals. Target count sizes of 100–300 in existing studies are likely conservative and robust. Given the low diversity of salt-marsh foraminiferal assemblages, our results are likely applicable throughout and beyond northeastern North America. 
    more » « less