skip to main content


Title: A Review of Recent Progress in β‐Ga 2 O 3 Epitaxial Growth: Effect of Substrate Orientation and Precursors in Metal–Organic Chemical Vapor Deposition
  more » « less
Award ID(s):
1809946
NSF-PAR ID:
10408074
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
physica status solidi (a)
Volume:
220
Issue:
8
ISSN:
1862-6300
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Metalorganic chemical vapor deposition (MOCVD) growths of β-Ga 2 O 3 on on-axis (100) Ga 2 O 3 substrates are comprehensively investigated. Key MOCVD growth parameters including growth temperature, pressure, group VI/III molar flow rate ratio, and carrier gas flow rate are mapped. The dependence of the growth conditions is correlated with surface morphology, growth rate, and electron transport properties of the MOCVD grown (100) β-Ga 2 O 3 thin films. Lower shroud gas (argon) flow is found to enhance the surface smoothness with higher room temperature (RT) electron Hall mobility. The growth rate of the films decreases but with an increase of electron mobility as the VI/III molar flow rate ratio increases. Although no significant variation on the surface morphologies is observed at different growth temperatures, the general trend of electron Hall mobilities are found to increase with increasing growth temperature. The growth rates reduce significantly with uniform surface morphologies as the chamber pressure increases. By tuning the silane flow rate, the controllable carrier concentration of (100) β-Ga 2 O 3 thin films between low-10 17  cm −3 and low-10 18  cm −3 was achieved. Under optimized growth condition, an (100) β-Ga 2 O 3 thin film with RMS roughness value of 1.64 nm and a RT mobility of 24 cm 2 /Vs at a carrier concentration of 7.0 × 10 17  cm −3 are demonstrated. The mobilities are primarily limited by the twin lamellae and stacking faults defects generated from the growth interface. Atomic resolution scanning transmission electron microscopy reveals the formation of twin boundary defects in the films, resulting in the degradation of crystalline quality. Results from this work provide fundamental understanding of the MOCVD epitaxy of (100) β-Ga 2 O 3 on on-axis Ga 2 O 3 substrates and the dependence of the material properties on growth conditions. The limitation of electron transport properties of the (100) β-Ga 2 O 3 thin films below 25 cm 2 /Vs is attributed to the formation of incoherent boundaries (twin lamellae) and stacking faults grown along the on-axis (100) crystal orientation. 
    more » « less
  2.  
    more » « less
  3. We report the use of suboxide molecular-beam epitaxy ( S-MBE) to grow β-Ga 2 O 3 at a growth rate of ∼1 µm/h with control of the silicon doping concentration from 5 × 10 16 to 10 19  cm −3 . In S-MBE, pre-oxidized gallium in the form of a molecular beam that is 99.98% Ga 2 O, i.e., gallium suboxide, is supplied. Directly supplying Ga 2 O to the growth surface bypasses the rate-limiting first step of the two-step reaction mechanism involved in the growth of β-Ga 2 O 3 by conventional MBE. As a result, a growth rate of ∼1 µm/h is readily achieved at a relatively low growth temperature ( T sub ≈ 525 °C), resulting in films with high structural perfection and smooth surfaces (rms roughness of <2 nm on ∼1 µm thick films). Silicon-containing oxide sources (SiO and SiO 2 ) producing an SiO suboxide molecular beam are used to dope the β-Ga 2 O 3 layers. Temperature-dependent Hall effect measurements on a 1 µm thick film with a mobile carrier concentration of 2.7 × 10 17  cm −3 reveal a room-temperature mobility of 124 cm 2  V −1  s −1 that increases to 627 cm 2  V −1  s −1 at 76 K; the silicon dopants are found to exhibit an activation energy of 27 meV. We also demonstrate working metal–semiconductor field-effect transistors made from these silicon-doped β-Ga 2 O 3 films grown by S-MBE at growth rates of ∼1 µm/h. 
    more » « less
  4.  
    more » « less
  5. We present a review of the published experimental and simulation radiation damage results in Ga 2 O 3 . All of the polytypes of Ga 2 O 3 are expected to show similar radiation resistance as GaN and SiC, considering their average bond strengths. However, this is not enough to explain the orders of magnitude difference of the relative resistance to radiation damage of these materials compared to GaAs and dynamic annealing of defects is much more effective in Ga 2 O 3 . It is important to examine the effect of all types of radiation, given that Ga 2 O 3 devices will potentially be deployed both in space and terrestrial applications. Octahedral gallium monovacancies are the main defects produced under most radiation conditions because of the larger cross-section for interaction compared to oxygen vacancies. Proton irradiation introduces two main paramagnetic defects in Ga 2 O 3 , which are stable at room temperature. Charge carrier removal can be explained by Fermi-level pinning far from the conduction band minimum due to gallium interstitials (Ga i ), vacancies (V Ga ), and antisites (Ga O ). One of the most important parameters to establish is the carrier removal rate for each type of radiation, since this directly impacts the current in devices such as transistors or rectifiers. When compared to the displacement damage predicted by the Stopping and Range of Ions in Matter(SRIM) code, the carrier removal rates are generally much lower and take into account the electrical nature of the defects created. With few experimental or simulation studies on single event effects (SEE) in Ga 2 O 3 , it is apparent that while other wide bandgap semiconductors like SiC and GaN are robust against displacement damage and total ionizing dose, they display significant vulnerability to single event effects at high Linear Energy Transfer (LET) and at much lower biases than expected. We have analyzed the transient response of β -Ga 2 O 3 rectifiers to heavy-ion strikes via TCAD simulations. Using field metal rings improves the breakdown voltage and biasing those rings can help control the breakdown voltage. Such biased rings help in the removal of the charge deposited by the ion strike. 
    more » « less