skip to main content


Title: Tracking of Point Defects in the Full Compositional Range of AlGaN via Photoluminescence Spectroscopy
  more » « less
Award ID(s):
1916800 1653383 1508854
NSF-PAR ID:
10408180
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
physica status solidi (a)
Volume:
220
Issue:
8
ISSN:
1862-6300
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2.  
    more » « less
  3. Abstract

    We introduce the heterocumulene ligand [(Ad)NCC(tBu)](Ad=1‐adamantyl (C10H15),tBu=tert‐butyl, (C4H9)), which can adopt two forms, the azaalleneyl and ynamide. This ligand platform can undergo a reversible chelotropic shift using Brønsted acid‐base chemistry, which promotes an unprecedented spin‐state change of the [VIII] ion. These unique scaffolds are prepared via addition of 1‐adamantyl isonitrile (C≡NAd) across the alkylidyne in complexes [(BDI)V≡CtBu(OTf)] (A) (BDI=ArNC(CH3)CHC(CH3)NAr), Ar=2,6‐iPr2C6H3) and [(dBDI)V≡CtBu(OEt2)] (B) (dBDI2−=ArNC(CH3)CHC(CH2)NAr). ComplexAreacts with C≡NAd, to generate the high‐spin [VIII] complex with a κ1N‐ynamide ligand, [(BDI)V{κ1N‐(Ad)NCC(tBu)}(OTf)] (1). Conversely,Breacts with C≡NAd to generate a low‐spin [VIII] diamagnetic complex having a chelated κ2C,N‐azaalleneyl ligand, [(dBDI)V{κ2N,C‐(Ad)NCC(tBu)}] (2). Theoretical studies have been applied to better understand the mechanism of formation of2and the electronic reconfiguration upon structural rearrangement by the alteration of ligand denticity between1and2.

     
    more » « less
  4. Abstract

    Size‐based selectivity for metal ions based on highly preorganized five‐membered chelate rings is discussed. Metal ion complexation by the tetra‐pyridyl ligand EBIP ((8,9‐dihydro‐diquino[8,7‐b:7′,8′‐j][1,10]phenanthroline) is investigated, Formation constants (log K1) are reported for EBIP with 28 metal ions in 50 % CH3OH/H2O (v/v). The shift in size‐selectivity toward large metal ions and against small metal is demonstrated. Log K1for the EBIP complexes shows a steady increase from La(III) to Lu(III), with a strong local maximum at Sm(III), and strong local minimum at Gd(III). This difference in log K1between Sm(III) and Gd(III) for the tetra‐pyridyls is shown to depend largely on the level of preorganization of the ligand, being at a maximum for EBIP and a minimum for quaterpyridine. Log K1for the Y(III) complex is invariably lower than for the similarly‐sized Ho(III) for all ligands that contain any nitrogen donors. Lower log K values for Y(III) are due to stabilization of the Ln(III) complexes with nitrogen donors by participation of the 5d orbitals, and to a lesser extent the 4 f orbitals, of the Ln(III) ions in M−L bonding. A DFT analysis of selectivity of tetra‐pyridyls for metal ions shows that Y(III) complexes should be less stable than similarly‐sized Ho(III) complexes.

     
    more » « less
  5. Abstract

    Addition of the potassium dichalcogenidodiphenylphosphinate salts, KE2PPh2(E=S, Se), to either the THF solvate of vanadium(III) chloride or unsolvated chromium(III) chloride results in rapid ligand substitution and the formation of a series of closely‐related trivalent, neutral mononuclear complexes, M(E2PPh2)3(M=V, Cr; E=S, Se), isolated in modest to good yield. The metal dichalcogenidophosphinate complexes reported herein were characterized by IR, UV‐vis, and1H NMR spectroscopies, and their solid‐state molecular structures were determined by single‐crystal X‐ray crystallography. Importantly, the comparative analysis includes the structural and spectroscopic studies of two rare V(III) dithio‐ and diseleno‐phosphinate VE6cores, as well as, two previously known CrE6analogues. In the solid‐state the title complexes exhibit trigonal distortion from octahedral with torsion angles ranging from 43(2) to 50.3(6)° and structural parameters consistent with ligation of progressively ‘softer’ chalcogen‐donors.

     
    more » « less