skip to main content


Search for: All records

Award ID contains: 1508854

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We investigate the electrical characteristics of Ni Schottky contacts on n-type GaN films that have undergone ultra-high-pressure annealing (UHPA), a key processing step for activating implanted Mg. Contacts deposited on these films exhibit low rectification and high leakage current compared to contacts on as-grown films. By employing an optimized surface treatment to restore the GaN surface following UHPA, we obtain Schottky contacts with a high rectification ratio of ∼109, a near-unity ideality factor of 1.03, and a barrier height of ∼0.9 eV. These characteristics enable the development of GaN junction barrier Schottky diodes employing Mg implantation and UHPA.

     
    more » « less
  2. High p-conductivity (0.7 Ω−1 cm−1) was achieved in high-Al content AlGaN via Mg doping and compositional grading. A clear transition between the valence band and impurity band conduction mechanisms was observed. The transition temperature depended strongly on the compositional gradient and to some degree on the Mg doping level. A model is proposed to explain the role of the polarization field in enhancing the conductivity in Mg-doped graded AlGaN films and the transition between the two conduction types. This study offers a viable path to technologically useful p-conductivity in AlGaN.

     
    more » « less
    Free, publicly-accessible full text available April 10, 2024
  3. Highly conductive Ge-doped AlN with conductivity of 0.3 (Ω cm)−1 and electron concentration of 2 × 1018 cm−3 was realized via a non-equilibrium process comprising ion implantation and annealing at a moderate thermal budget. Similar to a previously demonstrated shallow donor state in Si-implanted AlN, Ge implantation also showed a shallow donor behavior in AlN with an ionization energy ∼80 meV. Ge showed a 3× higher conductivity than its Si counterpart for a similar doping level. Photoluminescence spectroscopy indicated that higher conductivity for Ge-doped AlN was achieved primarily due to lower compensation. This is the highest n-type conductivity reported for AlN doped with Ge to date and demonstration of technologically useful conductivity in Ge-doped AlN.

     
    more » « less
    Free, publicly-accessible full text available April 3, 2024
  4. Record-low p-type resistivities of 9.7 and 37 Ω cm were achieved in Al0.7Ga0.3N and Al0.8Ga0.2N films, respectively, grown on single-crystal AlN substrate by metalorganic chemical vapor deposition. A two-band conduction model was introduced to explain the anomalous thermal behavior of resistivity and the Hall coefficient. Relatively heavy Mg doping (5 × 1019 cm−3), in conjunction with compensation control, enabled the formation of an impurity band exhibiting a shallow activation energy of ∼30 meV for a wide temperature range. Valence band conduction associated with a large Mg ionization energy was dominant above 500 K. The apparently anomalous results deviating from the classical semiconductor physics were attributed to fundamentally different Hall scattering factors for impurity and valence band conduction. This work demonstrates the utility of impurity band conduction to achieve technologically relevant p-type conductivity in Al-rich AlGaN.

     
    more » « less
  5.  
    more » « less
  6. Abstract We report a kV class, low ON-resistance, vertical GaN junction barrier Schottky (JBS) diode with selective-area p-regions formed via Mg implantation followed by high-temperature, ultra-high pressure (UHP) post-implantation activation anneal. The JBS has an ideality factor of 1.03, a turn-on voltage of 0.75 V, and a specific differential ON-resistance of 0.6 mΩ·cm 2 . The breakdown voltage of the JBS diode is 915 V, corresponding to a maximum electric field of 3.3 MV cm −1 . These results underline that high-performance GaN JBS can be realized using Mg implantation and high-temperature UHP post-activation anneal. 
    more » « less
  7. A two-band transport model is proposed to explain electrical conduction in graded aluminum gallium nitride layers, where the free hole conduction in the valence band is favored at high temperatures and hopping conduction in the impurity band dominates at low temperatures. The model simultaneously explains the significantly lowered activation energy for p-type conduction (∼10 meV), a nearly constant sheet conductivity at lower temperatures (200–330 K), and the anomalous reversal of the Hall coefficient caused by the negative sign of the Hall scattering factor in the hopping conduction process. A comparison between the uniform and graded samples suggests that compositional grading significantly enhances the probability of phonon-assisted hopping transitions between the Mg atoms.

     
    more » « less
  8. Abstract We report on low resistivity (1.1 Ω cm) in p-type bulk doping of N-polar GaN grown by metalorganic chemical vapor deposition. High nitrogen chemical potential growth, facilitated by high process supersaturation, was instrumental in reducing the incorporation of compensating oxygen as well as nitrogen-vacancy-related point defects. This was confirmed by photoluminescence studies and temperature-dependent Hall effect measurements. The suppressed compensation led to an order of magnitude improvement in p-type conductivity with the room-temperature hole concentration and mobility measuring 6 × 10 17 cm −3 and 9 cm 2 V −1 s −1 , respectively. These results are paramount in the pathway towards N-polar GaN power and optoelectronic devices. 
    more » « less
  9. The ultra-wide bandgap of Al-rich AlGaN is expected to support a significantly larger breakdown field compared to GaN, but the reported performance thus far has been limited by the use of foreign substrates. In this Letter, the material and electrical properties of Al 0.85 Ga 0.15 N/Al 0.6 Ga 0.4 N high electron mobility transistors (HEMT) grown on a 2-in. single crystal AlN substrate are investigated, and it is demonstrated that native AlN substrates unlock the potential for Al-rich AlGaN to sustain large fields in such devices. We further study how Ohmic contacts made directly to a Si-doped channel layer reduce the knee voltage and increase the output current density. High-quality AlGaN growth is confirmed via scanning transmission electron microscopy, which also reveals the absence of metal penetration at the Ohmic contact interface and is in contrast to established GaN HEMT technology. Two-terminal mesa breakdown characteristics with 1.3  μm separation possess a record-high breakdown field strength of ∼11.5 MV/cm for an undoped Al 0.6 Ga 0.4 N-channel layer. The breakdown voltages for three-terminal devices measured with gate-drain distances of 4 and 9  μm are 850 and 1500 V, respectively. 
    more » « less
  10. Abstract We demonstrate controlled Si doping in the low doping range of 5 × 10 15 –2.5 × 10 16 cm −3 with mobility >1000 cm 2  V −1 s −1 in GaN films grown by metalorganic chemical vapor deposition. The carbon-related compensation and mobility collapse were prevented by controlling the electrochemical potential near the growth surface via chemical potential control (CPC) and defect quasi-Fermi level (dQFL) point-defect management techniques. While the CPC was targeted to reduce the net C N concentration, the dQFL control was used to reduce the fraction of C atoms with the compensating configuration, i.e. C N − 1 . The low compensating acceptor concentration was confirmed via temperature-dependent Hall effect analysis and capacitance–voltage measurements. 
    more » « less