skip to main content

Title: Simulation of Neighborhood‐Scale Air Quality With Two‐Way Coupled WRF‐CMAQ Over Southern Lake Michigan‐Chicago Region

The southern Lake Michigan region of the United States, home to Chicago, Milwaukee, and other densely populated Midwestern cities, frequently experiences high pollutant episodes with unevenly distributed exposure and health burdens. Using the two‐way coupled Weather Research Forecast and Community Multiscale Air Quality Model (WRF‐CMAQ), we investigate criteria pollutants over a southern Lake Michigan domain using 1.3 and 4 km resolution hindcast simulations. We assess WRF‐CMAQ's performance using data from the National Climatic Data Center and Environmental Protection Agency Air Quality System. Our 1.3 km simulation slightly improves on the 4 km simulation's meteorological and chemical performance while also resolving key details in areas of high exposure and impact, that is, urban environments. At 1.3 km, we find that most air quality‐relevant meteorological components of WRF‐CMAQ perform at or above community benchmarks. WRF‐CMAQ's chemical performance also largely meets community standards, with substantial nuance depending on the performance metric and component assessed. For example, hourly simulated NO2and O3are highly correlated with observations (r > 0.6) while PM2.5is less so (r = 0.4). Similarly, hourly simulated NO2and PM2.5have low biases (<10%), whereas O3biases are larger (>30%). Simulated spatial pollutant patterns show distinct urban‐rural footprints, with urban NO2and PM2.520%–60% higher than rural, and urban O36% lower. We use our 1.3 km simulations to resolve high‐pollution areas within individual urban neighborhoods and characterize seasonal changes in O3regimes across tight spatial gradients. Our findings demonstrate both the benefits and limitations of high‐resolution simulations, particularly over urban settings.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study examines the benefit of using a dynamical ensemble for 48 hr deterministic and probabilistic predictions of near‐surface fine particulate matter (PM2.5) over the contiguous United States (CONUS). Our ensemble design captures three key sources of uncertainties in PM2.5modeling including meteorology, emissions, and secondary organic aerosol (SOA) formation. Twenty‐four ensemble members were simulated using the Community Multiscale Air Quality (CMAQ) model during January, April, July, and October 2016. The raw ensemble mean performed better than most of the ensemble members but underestimated the observed PM2.5over the CONUS with the largest underestimation over the western CONUS owing to negative PM2.5bias in nearly all the members. To improve the ensemble performance, we calibrated the raw ensemble using model output statistics (MOS) and variance deficit methods. The calibrated ensemble captured the diurnal and day‐to‐day variability in observed PM2.5very well and exhibited almost zero mean bias. The mean bias in the calibrated ensemble was reduced by 90–100% in the western CONUS and by 40–100% in other parts of the CONUS, compared to the raw ensemble in all months. The corresponding reduction in root‐mean‐square error (RMSE) was 13–40%. The calibrated ensemble also showed 30% improvement in the RMSE and spread matching compared to the raw ensemble. We have also shown that a nine‐member ensemble based on combinations of three meteorological and three anthropogenic emission scenarios can be used as a smaller subset of the full ensemble when sufficient computational resources are not available in the operational setting.

    more » « less
  2. Fairbanks-North Star Borough (FNSB), Alaska perennially experiences some of the worst wintertime air quality in the United States. FNSB was designated as a “serious” nonattainment area by the U.S. Environmental Protection Agency in 2017 for excessive fine particulate matter (PM 2.5 ) concentrations. The ALPACA (Alaskan Layered Pollution And Chemical Analysis) field campaign was established to understand the sources of air pollution, pollutant transformations, and the meteorological conditions contributing to FNSB's air quality problem. We performed on-road mobile sampling during ALPACA to identify and understand the spatial patterns of PM across the study domain, which contained multiple stationary field sites and regulatory measurement sites. Our measurements demonstrate the following: (1) both the between-neighborhood and within-neighborhood variations in PM 2.5 concentrations and composition are large (>10 μg m −3 ). (2) Spatial variations of PM in Fairbanks are tightly connected to meteorological conditions; dramatic between-neighborhood differences exist during strong temperature inversion conditions, but are significantly reduced during weaker temperature inversions, where atmospheric conditions are more well mixed. (3) During strong inversion conditions, total PM 2.5 and black carbon (BC) are tightly spatially correlated and have high absorption Ångstrom exponent values (AAE > 1.4), but are relatively uncorrelated during weak inversion conditions and have lower AAE. (4) PM 2.5 , BC, and total particle number (PN) concentrations decreased with increasing elevation, with the fall-off being more dramatic during strong temperature inversion conditions. (5) Mobile sampling reveals important air pollutant concentration differences between the multiple fixed sites of the ALPACA study, and demonstrates the utility of adding mobile sampling for understanding the spatial context of large urban air quality field campaigns. These results are important for understanding both the PM exposure for residents of FNSB and the spatial context of the ALPACA study. 
    more » « less
  3. Abstract

    High-resolution air quality data products have the potential to help quantify inequitable environmental exposures over space and across time by enabling the identification of hotspots, or areas that consistently experience elevated pollution levels relative to their surroundings. However, when different high-resolution data products identify different hotspots, the spatial sparsity of ‘gold-standard’ regulatory observations leaves researchers, regulators, and concerned citizens without a means to differentiate signal from noise. This study compares NO2hotspots detected within the city of Chicago, IL, USA using three distinct high-resolution (1.3 km) air quality products: (1) an interpolated product from Microsoft Research’s Project Eclipse—a dense network of over 100 low-cost sensors; (2) a two-way coupled WRF-CMAQ simulation; and (3) a down-sampled product using TropOMI satellite instrument observations. We use the Getis-OrdGi*statistic to identify hotspots of NO2and stratify results into high-, medium-, and low-agreement hotspots, including one consensus hotspot detected in all three datasets. Interrogating medium- and low-agreement hotspots offers insights into dataset discrepancies, such as sensor placement and model physics considerations, data retrieval caveats, and the potential for missing emission inventories. When treated as complements rather than substitutes, our work demonstrates that novel air quality products can enable researchers to address discrepancies in data products and can help regulators evaluate confidence in policy-relevant insights.

    more » « less
  4. Abstract

    Electric vehicles (EVs) constitute just a fraction of the current U.S. transportation fleet; however, EV market share is surging. EV adoption reduces on-road transportation greenhouse gas emissions by decoupling transportation services from petroleum, but impacts on air quality and public health depend on the nature and location of vehicle usage and electricity generation. Here, we use a regulatory-grade chemical transport model and a vehicle-to-electricity generation unit electricity assignment algorithm to characterize neighborhood-scale (∼1 km) air quality and public health benefits and tradeoffs associated with a multi-modal EV transition. We focus on a Chicago-centric regional domain wherein 30% of the on-road transportation fleet is instantaneously electrified and changes in on-road, refueling, and power plant emissions are considered. We find decreases in annual population-weighted domain mean NO2(−11.83%) and PM2.5(−2.46%) with concentration reductions of up to −5.1 ppb and −0.98µg m−3in urban cores. Conversely, annual population-weighted domain mean maximum daily 8 h average ozone (MDA8O3) concentrations increase +0.64%, with notable intra-urban changes of up to +2.3 ppb. Despite mixed pollutant concentration outcomes, we find overall positive public health outcomes, largely driven by NO2concentration reductions that result in outsized mortality rate reductions for people of color, particularly for the Black populations within our domain.

    more » « less
  5. Abstract

    Atmospheric iron solubility varies depending on whether the particles are collected in rural or urban areas, with urban areas showing increased iron solubility. In this study, we investigate if the iron species present in different environments affects its ultimate solubility. Field data are presented from the Platte River Air Pollution and Photochemistry Experiment (PRAPPE), aimed at understanding the interactions between organic carbon and trace elements in atmospheric particulate matter (PM). 24‐hr PM2.5samples were collected during the summer and winter (2016–2017), at three different sites on the Eastern Colorado plains: an urban, agricultural, and a mixed site. Downtown Denver had an average total and water‐soluble iron air concentration of 181.2 and 7.7 ng m−3, respectively. Platteville, the mixed site, had an average of total iron of 76.1 ng m−3, with average water‐soluble iron concentration of 9.1 ng m−3. Jackson State Park (rural/agricultural) had the lowest total iron average of 31.5 ng m−3and the lowest water‐soluble iron average, 1.3 ng m−3. The iron oxidation state and chemical speciation of 97 samples across all sites and seasons was probed by X‐ray absorption near edge structure (XANES) spectroscopy. The most common iron phases observed were almandine (Fe₃Al₂Si₃O₁₂) (Denver 21%, Platteville 16%, Jackson 24%), magnetite (Fe3O4) (Denver 9%, Platteville 4%, Jackson 5%) and Fe (III)dextran (Denver 5%, Platteville 13%, Jackson 5%), a surrogate for Fe‐organic complexes. Additionally, native iron [Fe(0)] was found in significant amounts at all sites. No correlation was observed between iron solubility and iron oxidation state or chemical speciation.

    more » « less